State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Adv Sci (Weinh). 2023 Apr;10(12):e2206714. doi: 10.1002/advs.202206714. Epub 2023 Feb 19.
Li-rich and Ni-rich layered oxides as next-generation high-energy cathodes for lithium-ion batteries (LIBs) possess the catalytic surface, which leads to intensive interfacial reactions, transition metal ion dissolution, gas generation, and ultimately hinders their applications at 4.7 V. Here, robust inorganic/organic/inorganic-rich architecture cathode-electrolyte interphase (CEI) and inorganic/organic-rich architecture anode-electrolyte interphase (AEI) with F-, B-, and P-rich inorganic components through modulating the frontier molecular orbital energy levels of lithium salts are constructed. A ternary fluorinated lithium salts electrolyte (TLE) is formulated by mixing 0.5 m lithium difluoro(oxalato)borate, 0.2 m lithium difluorophosphate with 0.3 m lithium hexafluorophosphate. The obtained robust interphase effectively suppresses the adverse electrolyte oxidation and transition metal dissolution, significantly reduces the chemical attacks to AEI. Li-rich Li Mn Ni Co O and Ni-rich LiNi Co Mn O in TLE exhibit high-capacity retention of 83.3% after 200 cycles and 83.3% after 1000 cycles under 4.7 V, respectively. Moreover, TLE also shows excellent performances at 45 °C, demonstrating this inorganic rich interface successfully inhibits the more aggressive interface chemistry at high voltage and high temperature. This work suggests that the composition and structure of the electrode interface can be regulated by modulating the frontier molecular orbital energy levels of electrolyte components, so as to ensure the required performance of LIBs.
富锂和富镍层状氧化物作为下一代高能量锂离子电池(LIB)的阴极,具有催化表面,导致剧烈的界面反应、过渡金属离子溶解、气体生成,最终阻碍了它们在 4.7 V 下的应用。在这里,通过调节锂盐的前沿分子轨道能级,构建了具有 F、B 和 P 丰富无机成分的富无机/有机/富无机结构的阴极-电解质界面(CEI)和富无机/有机结构的阳极-电解质界面(AEI)。通过混合 0.5 m 二氟(草酸)硼酸锂、0.2 m 双氟磷酸锂和 0.3 m 六氟磷酸锂,制备了一种三元氟化锂盐电解液(TLE)。所获得的坚固界面有效地抑制了不利的电解质氧化和过渡金属溶解,显著降低了对 AEI 的化学攻击。在 TLE 中,富锂 Li Mn Ni Co O 和富镍 LiNi Co Mn O 在 4.7 V 下经过 200 次循环和 1000 次循环后,容量保持率分别高达 83.3%和 83.3%。此外,TLE 在 45°C 下也表现出优异的性能,表明这种富无机界面成功地抑制了高压和高温下更具攻击性的界面化学。这项工作表明,通过调节电解质成分的前沿分子轨道能级,可以调控电极界面的组成和结构,从而确保锂离子电池所需的性能。