School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
J Am Chem Soc. 2012 Sep 19;134(37):15476-87. doi: 10.1021/ja305366r. Epub 2012 Sep 5.
The mechanism of Li(+) transport through the solid electrolyte interphase (SEI), a passivating film on electrode surfaces, has never been clearly elucidated despite its overwhelming importance to Li-ion battery operation and lifetime. The present paper develops a multiscale theoretical methodology to reveal the mechanism of Li(+) transport in a SEI film. The methodology incorporates the boundary conditions of the first direct diffusion measurements on a model SEI consisting of porous (outer) organic and dense (inner) inorganic layers (similar to typical SEI films). New experimental evidence confirms that the inner layer in the ∼20 nm thick model SEI is primarily crystalline Li(2)CO(3). Using density functional theory, we first determined that the dominant diffusion carrier in Li(2)CO(3) below the voltage range of SEI formation is excess interstitial Li(+). This diffuses via a knock-off mechanism to maintain higher O-coordination, rather than direct-hopping through empty spaces in the Li(2)CO(3) lattice. Mesoscale diffusion equations were then formulated upon a new two-layer/two-mechanism model: pore diffusion in the outer layer and knock-off diffusion in the inner layer. This diffusion model predicted the unusual isotope ratio (6)Li(+)/(7)Li(+) profile measured by TOF-SIMS, which increases from the SEI/electrolyte surface and peaks at a depth of 5 nm, and then gradually decreases within the dense layer. With no fitting parameters, our approach is applicable to model general transport properties, such as ionic conductivity, for SEI films on the surface of other electrodes, from the atomic scale to the mesoscale, as well as aging phenomenon.
穿过固体电解质界面(SEI)的 Li(+)传输机制,尽管对锂离子电池的运行和寿命至关重要,但从未得到明确阐明。本文开发了一种多尺度理论方法来揭示 SEI 膜中 Li(+)传输的机制。该方法结合了对由多孔(外)有机层和致密(内)无机层组成的模型 SEI(类似于典型的 SEI 膜)进行的首次直接扩散测量的边界条件。新的实验证据证实,在约 20nm 厚的模型 SEI 中,内层主要是结晶的 Li(2)CO(3)。使用密度泛函理论,我们首先确定在 SEI 形成的电压范围内,Li(2)CO(3)中占主导地位的扩散载体是过量的间隙 Li(+)。它通过撞击机制扩散,以维持更高的 O 配位,而不是通过 Li(2)CO(3)晶格中的空穴直接跳跃。然后在新的两层/两种机制模型上推导了介观扩散方程:外层的孔扩散和内层的撞击扩散。该扩散模型预测了由 TOF-SIMS 测量的不寻常同位素比(6)Li(+)/(7)Li(+)剖面,该剖面从 SEI/电解质表面增加,并在 5nm 深度处达到峰值,然后在致密层内逐渐减小。我们的方法没有拟合参数,适用于从原子尺度到介观尺度的其他电极表面的 SEI 膜的一般传输性质(如离子电导率)的建模,以及老化现象。