Suppr超能文献

用于锂电池的高压液体电解质:进展与展望

High-voltage liquid electrolytes for Li batteries: progress and perspectives.

作者信息

Fan Xiulin, Wang Chunsheng

机构信息

State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.

出版信息

Chem Soc Rev. 2021 Sep 20;50(18):10486-10566. doi: 10.1039/d1cs00450f.

Abstract

Since the advent of the Li ion batteries (LIBs), the energy density has been tripled, mainly attributed to the increase of the electrode capacities. Now, the capacity of transition metal oxide cathodes is approaching the limit due to the stability limitation of the electrolytes. To further promote the energy density of LIBs, the most promising strategies are to enhance the cut-off voltage of the prevailing cathodes or explore novel high-capacity and high-voltage cathode materials, and also replacing the graphite anode with Si/Si-C or Li metal. However, the commercial ethylene carbonate (EC)-based electrolytes with relatively low anodic stability of ∼4.3 V Li/Li cannot sustain high-voltage cathodes. The bottleneck restricting the electrochemical performance in Li batteries has veered towards new electrolyte compositions catering for aggressive next-generation cathodes and Si/Si-C or Li metal anodes, since the oxidation-resistance of the electrolytes and the formed cathode electrolyte interphase (CEI) layers at the high-voltage cathodes and solid electrolyte interphase (SEI) layers on anodes critically control the electrochemical performance of these high-voltage Li batteries. In this review, we present a comprehensive and in-depth overview on the recent advances, fundamental mechanisms, scientific challenges, and design strategies for the novel high-voltage electrolyte systems, especially focused on stability issues of the electrolytes, the compatibility and interactions between the electrolytes and the electrodes, and reaction mechanisms. Finally, novel insights, promising directions and potential solutions for high voltage electrolytes associated with effective SEI/CEI layers are proposed to motivate revolutionary next-generation high-voltage Li battery chemistries.

摘要

自锂离子电池(LIBs)问世以来,能量密度已增至三倍,这主要归功于电极容量的增加。如今,由于电解质稳定性的限制,过渡金属氧化物阴极的容量已接近极限。为进一步提高LIBs的能量密度,最具前景的策略是提高现有阴极的截止电压,或探索新型高容量、高电压的阴极材料,以及用硅/硅碳或锂金属取代石墨阳极。然而,阳极稳定性相对较低(约4.3 V Li/Li)的商用碳酸乙烯酯(EC)基电解质无法承受高电压阴极。由于电解质的抗氧化性以及在高电压阴极上形成的阴极电解质界面(CEI)层和阳极上的固体电解质界面(SEI)层严格控制着这些高电压锂电池的电化学性能,限制锂电池电化学性能的瓶颈已转向适合新一代高活性阴极以及硅/硅碳或锂金属阳极的新型电解质组合物。在本综述中,我们全面深入地概述了新型高电压电解质系统的最新进展、基本机制、科学挑战和设计策略,尤其关注电解质的稳定性问题、电解质与电极之间的兼容性和相互作用以及反应机制。最后,针对与有效SEI/CEI层相关的高电压电解质,提出了新颖的见解、有前景的方向和潜在的解决方案,以推动具有变革性的下一代高电压锂电池化学发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验