Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States.
J Phys Chem B. 2023 Mar 2;127(8):1749-1757. doi: 10.1021/acs.jpcb.2c09048. Epub 2023 Feb 21.
Sialoglycans on HeLa cells were labeled with a nitroxide spin radical through enzymatic glycoengineering (EGE)-mediated installation of azide-modified sialic acid (Neu5Ac9N) and then click reaction-based attachment of a nitroxide spin radical. α2,6-Sialyltransferase (ST) Pd2,6ST and α2,3-ST CSTII were used for EGE to install α2,6- and α2,3-linked Neu5Ac9N, respectively. The spin-labeled cells were analyzed by X-band continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy to gain insights into the dynamics and organizations of cell surface α2,6- and α2,3-sialoglycans. Simulations of the EPR spectra revealed average fast- and intermediate-motion components for the spin radicals in both sialoglycans. However, α2,6- and α2,3-sialoglycans in HeLa cells possess different distributions of the two components, e.g., a higher average population of the intermediate-motion component for α2,6-sialoglycans (78%) than that for α2,3-sialoglycans (53%). Thus, the average mobility of spin radicals in α2,3-sialoglycans was higher than that in α2,6-sialoglycans. Given the fact that a spin-labeled sialic acid residue attached to the 6-O-position of galactose/-acetyl-galactosamine would experience less steric hindrance and show more flexibility than that attached to the 3-O-position, these results may reflect the differences in local crowding/packing that restrict the spin-label and sialic acid motion for α2,6-linked sialoglycans. The studies further suggest that Pd2,6ST and CSTII may have different preferences for glycan substrates in the complex environment of the extracellular matrix. The discoveries of this work are biologically important as they are useful for interpreting the different functions of α2,6- and α2,3-sialoglycans and indicate the possibility of using Pd2,6ST and CSTII to target different glycoconjugates on cells.
通过酶糖基工程(EGE)介导的叠氮修饰唾液酸(Neu5Ac9N)的安装以及随后基于点击反应的氮氧自由基的附着,将 HeLa 细胞上的唾液酸糖蛋白进行氮氧自由基标记。α2,6-唾液酰转移酶(ST)Pd2,6ST 和 α2,3-唾液酰转移酶 CSTII 分别用于 EGE 以安装α2,6-和α2,3 连接的 Neu5Ac9N。用 X 波段连续波(CW)电子顺磁共振(EPR)光谱分析自旋标记的细胞,以深入了解细胞表面α2,6-和α2,3-唾液酸糖蛋白的动态和组织。EPR 光谱的模拟揭示了两种唾液酸糖蛋白中自旋自由基的快速和中间运动成分的平均值。然而,HeLa 细胞中的α2,6-和α2,3-唾液酸糖蛋白具有这两个成分的不同分布,例如,α2,6-唾液酸糖蛋白(78%)的中间运动成分的平均群体高于α2,3-唾液酸糖蛋白(53%)。因此,α2,3-唾液酸糖蛋白中自旋自由基的平均迁移率高于α2,6-唾液酸糖蛋白。鉴于连接到半乳糖/乙酰半乳糖胺的 6-O-位置的自旋标记唾液酸残基将经历较少的空间位阻并表现出更高的灵活性,而连接到 3-O-位置的自旋标记唾液酸残基将经历较少的空间位阻并表现出更高的灵活性,这些结果可能反映了限制连接到 3-O-位置的自旋标记和唾液酸运动的局部拥挤/包装的差异对于α2,6 连接的唾液酸糖蛋白。这些研究进一步表明,Pd2,6ST 和 CSTII 可能在细胞外基质的复杂环境中对聚糖底物具有不同的偏好。这项工作的发现具有重要的生物学意义,因为它们有助于解释α2,6-和α2,3-唾液酸糖蛋白的不同功能,并表明使用 Pd2,6ST 和 CSTII 靶向细胞上不同糖缀合物的可能性。