Suppr超能文献

一种基于错觉诱发视觉诱发电位的脑机接口静态范式。

A static paradigm based on illusion-induced VEP for brain-computer interfaces.

作者信息

Li Ruxue, Hu Honglin, Zhao Xi, Wang Zhenyu, Xu Guiying

机构信息

Intelligent Information and Communication Technology Research and Development Center, Shanghai Advanced Research Institute Chinese Academy of Sciences, 99 Haike Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.

Intelligent Information and Communication Technology Research and Development Center, Shanghai Advanced Research Institute, 99 Haike Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.

出版信息

J Neural Eng. 2023 Feb 21. doi: 10.1088/1741-2552/acbdc0.

Abstract

OBJECTIVE

Visual evoked potentials (VEPs) have been commonly applied in brain-computer interfaces (BCIs) due to their satisfactory classification performance recently. However, most existing methods with flickering or oscillating stimuli will induce visual fatigue under long-term training, thus restricting the implementation of VEP-based BCIs. To address this issue, a novel paradigm adopting static motion illusion based on illusion-induced visual evoked potential (IVEP) is proposed for BCIs to enhance visual experience and practicality.

APPROACH

This study explored the responses to baseline and illusion tasks including the Rotating-Tilted-Lines (RTL) illusion and Rotating-Snakes (RS) illusion. The distinguishable features were examined between different illusions by analyzing the event-related potentials (ERPs) and amplitude modulation of evoked oscillatory responses.

MAIN RESULTS

The illusion stimuli elicited VEPs in an early time window encompassing a negative component (N1) from 110 to 200 ms and a positive component (P2) between 210 and 300 ms. Based on the feature analysis, a filter bank was designed to extract discriminative signals. The task-related component analysis (TRCA) was used to evaluate the binary classification task performance of the proposed method. Then the highest accuracy of 86.67% was achieved with a data length of 0.6 s.

SIGNIFICANCE

The results of this study demonstrate that the static motion illusion paradigm has the feasibility of implementation and is promising for VEP-based BCI applications.

摘要

目的

视觉诱发电位(VEPs)因其近来令人满意的分类性能,已在脑机接口(BCIs)中得到广泛应用。然而,大多数现有的使用闪烁或振荡刺激的方法在长期训练下会导致视觉疲劳,从而限制了基于VEP的脑机接口的实施。为解决这一问题,提出了一种基于错觉诱发视觉诱发电位(IVEP)采用静态运动错觉的新型范式,用于脑机接口,以增强视觉体验和实用性。

方法

本研究探索了对基线和错觉任务的反应,包括旋转倾斜线(RTL)错觉和旋转蛇(RS)错觉。通过分析事件相关电位(ERPs)和诱发振荡反应的幅度调制,研究了不同错觉之间的可区分特征。

主要结果

错觉刺激在一个早期时间窗口内诱发了VEP,该窗口包含一个110至200毫秒的负成分(N1)和一个210至300毫秒之间的正成分(P2)。基于特征分析,设计了一个滤波器组来提取判别信号。任务相关成分分析(TRCA)用于评估所提方法的二分类任务性能。然后,在数据长度为0.6秒的情况下,实现了86.67%的最高准确率。

意义

本研究结果表明,静态运动错觉范式具有实施的可行性,对基于VEP的脑机接口应用具有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验