Suppr超能文献

为了解决基于 VEP 的脑机接口中的文盲现象。

Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.

机构信息

Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.

出版信息

Biomed Phys Eng Express. 2020 May 6;6(3):035034. doi: 10.1088/2057-1976/ab87e6.

Abstract

Brain-Computer Interface (BCI) systems use brain activity as an input signal and enable communication without requiring bodily movement. This novel technology may help impaired patients and users with disabilities to communicate with their environment. Over the years, researchers investigated the performance of subjects in different BCI paradigms, stating that 15%-30% of BCI users are unable to reach proficiency in using a BCI system and therefore were labelled as BCI illiterates. Recent progress in the BCIs based on the visually evoked potentials (VEPs) necessitates re-considering of this term, as very often all subjects are able to use VEP-based BCI systems. This study examines correlations among BCI performance, personal preferences, and further demographic factors for three different modern visually evoked BCI paradigms: (1) the conventional Steady-State Visual Evoked Potentials (SSVEPs) based on visual stimuli flickering at specific constant frequencies (fVEP), (2) Steady-State motion Visual Evoked Potentials (SSmVEP), and (3) code-modulated Visual Evoked Potentials (cVEP). Demographic parameters, as well as handedness, vision correction, BCI experience, etc., have no significant effect on the performance of VEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only 20 out of a total of 86 participants indicated a change in fatigue during the experiment. 83 subjects were able to successfully finish all spelling tasks with the fVEP speller, with a mean (SD) information transfer rate of 31.87 bit/min (9.83) and an accuracy of 95.28% (5.18), respectively. Compared to that, 80 subjects were able to successfully finish all spelling tasks using SSmVEP, with a mean information transfer rate of 26.44 bit/min (8.04) and an accuracy of 91.10% (6.01), respectively. Finally, all 86 subjects were able to successfully finish all spelling tasks with the cVEP speller, with a mean information transfer rate of 40.23 bit/min (7.63) and an accuracy of 97.83% (3.37).

摘要

脑-机接口(BCI)系统使用大脑活动作为输入信号,使无需身体运动即可进行交流。这项新技术可能有助于受损患者和残疾用户与环境进行交流。多年来,研究人员研究了不同 BCI 范式下受试者的表现,指出 15%-30%的 BCI 用户无法熟练使用 BCI 系统,因此被标记为 BCI 文盲。基于视觉诱发电位(VEPs)的 BCI 的最新进展需要重新考虑这个术语,因为通常所有受试者都能够使用基于 VEP 的 BCI 系统。本研究检查了三种不同现代视觉诱发电位 BCI 范式(1)基于视觉刺激以特定恒定频率(fVEP)闪烁的传统稳态视觉诱发电位(SSVEPs)、(2)稳态运动视觉诱发电位(SSmVEP)和(3)编码调制视觉诱发电位(cVEP)之间的 BCI 性能、个人偏好和进一步的人口统计学因素之间的相关性。人口统计学参数,以及手性、视力矫正、BCI 经验等,对基于 VEP 的 BCI 的性能没有显著影响。大多数受试者并不认为闪烁的刺激很烦人,只有总共 86 名参与者中的 20 名表示在实验过程中疲劳感发生了变化。83 名受试者能够成功完成所有 fVEP 拼写任务,平均(SD)信息传输率为 31.87 位/分钟(9.83),准确率为 95.28%(5.18)。相比之下,80 名受试者能够成功完成所有使用 SSmVEP 的拼写任务,平均信息传输率为 26.44 位/分钟(8.04),准确率为 91.10%(6.01)。最后,所有 86 名受试者都能够成功完成所有使用 cVEP 拼写器的拼写任务,平均信息传输率为 40.23 位/分钟(7.63),准确率为 97.83%(3.37)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验