Suppr超能文献

通过使用统计过程控制来监测精神状态,可以预测抑郁症的复发。

Recurrence of depression can be foreseen by monitoring mental states with statistical process control.

作者信息

Snippe Evelien, Smit Arnout C, Kuppens Peter, Burger Huibert, Ceulemans Eva

机构信息

University Medical Center Groningen, University of Groningen.

KU Leuven.

出版信息

J Psychopathol Clin Sci. 2023 Feb;132(2):145-155. doi: 10.1037/abn0000812.

Abstract

Detecting early signs of recurrence of psychopathology is key for prevention and treatment. Personalized risk assessment is especially relevant for formerly depressed patients, for whom recurrence is common. We aimed to examine whether recurrence of depression can be accurately foreseen by applying Exponentially Weighted Moving Average (EWMA) statistical process control charts to Ecological Momentary Assessment (EMA) data. Participants were formerly depressed patients (n = 41) in remission who (gradually) discontinued antidepressants. Participants completed five smartphone-based EMA questionnaires a day for 4 months. EWMA control charts were used to prospectively detect structural mean shifts in high and low arousal negative affect (NA), high and low arousal positive affect (PA), and repetitive negative thinking in each individual. A significant increase in repetitive negative thinking (worry, negative thoughts about the self) was the most sensitive early sign of recurrence: this was detected in 18 out of 22 patients (82%) before recurrence and in 8 out of 19 patients (42%) who stayed in remission. A significant increase in NA high arousal (stress, irritation, restlessness) was the most specific early sign of recurrence: this was detected in 10 out of 22 patients (45%) before recurrence and in 2 out of 19 patients (11%) who stayed in remission. These mean changes were detected at least a month before recurrence in the majority of the participants. The outcomes were robust across EWMA parameter choices, but not when using fewer observations per day. The findings demonstrate the value of monitoring EMA data with EWMA charts for detecting prodromal symptoms of depression in real-time. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

检测精神病理学复发的早期迹象是预防和治疗的关键。个性化风险评估对于既往有抑郁症的患者尤为重要,因为复发在他们中很常见。我们旨在研究通过将指数加权移动平均(EWMA)统计过程控制图应用于生态瞬时评估(EMA)数据,是否能够准确预测抑郁症的复发。参与者为处于缓解期的既往有抑郁症的患者(n = 41),他们(逐渐)停用了抗抑郁药。参与者连续4个月每天完成5份基于智能手机的EMA问卷。EWMA控制图用于前瞻性地检测每个个体在高唤醒和低唤醒消极情绪(NA)、高唤醒和低唤醒积极情绪(PA)以及重复性消极思维方面的结构均值变化。重复性消极思维(担忧、对自我的消极想法)的显著增加是复发最敏感的早期迹象:在22例复发患者中有18例(82%)在复发前检测到,在19例病情持续缓解的患者中有8例(42%)检测到。高唤醒NA(压力、易怒、不安)的显著增加是复发最具特异性的早期迹象:在22例复发患者中有10例(45%)在复发前检测到,在19例病情持续缓解的患者中有2例(11%)检测到。这些均值变化在大多数参与者复发前至少一个月就被检测到了。在EWMA参数选择中,结果是稳健的,但每天使用较少观察值时则不然。研究结果证明了使用EWMA图表监测EMA数据以实时检测抑郁症前驱症状的价值。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验