Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America.
PLoS Genet. 2023 Feb 21;19(2):e1010598. doi: 10.1371/journal.pgen.1010598. eCollection 2023 Feb.
Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.
转座元件 (TE) 是自私的遗传元件,可导致有害突变。在果蝇中,据估计,所有自发可见标记表型的一半都是由 TE 插入引起的突变。有几个因素可能限制了在基因组中积累呈指数扩增的 TE。首先,有人提出,随着拷贝数的增加,协同作用会放大 TE 的危害,从而限制 TE 的拷贝数。然而,这种协同作用的性质还不太清楚。其次,由于 TE 带来的危害,真核生物已经进化出基于小 RNA 的基因组防御系统来限制转座。然而,与所有免疫系统一样,存在自身免疫的代价,并且基于小 RNA 的系统会无意中沉默 TE 插入侧翼的基因。在对黑腹果蝇(Drosophila melanogaster)中必需减数分裂基因的筛选中,发现一个邻近基因内的截短 Doc 反转录转座子会触发 ald 的生殖系沉默,ald 是果蝇 Mps1 同源物,是减数分裂中染色体正确分离所必需的基因。随后的筛选发现了一个新的 Hobo DNA 转座子插入到同一个邻近基因中,抑制了这种沉默。在这里,我们描述了原始 Doc 插入如何触发侧翼 piRNA 的生物发生和局部基因沉默。我们表明,这种局部基因沉默发生在顺式,并依赖于 Rhino-Deadlock-Cutoff (RDC) 复合物的组成部分 deadlock,以触发 TE 插入处双链 piRNA 的生物发生。我们进一步表明,额外的 Hobo 插入如何通过减少原始 Doc 插入触发的侧翼 piRNA 生物发生来导致去沉默。这些结果支持了 piRNA 生物发生的 TE 介导的基因沉默模型,该模型依赖于转录的局部决定因素。这可以解释 TE 在群体中和实验室中引发的复杂靶基因沉默模式。它还提供了 TE 插入之间信号上位性的机制,阐明了它们相互作用的复杂性质,并支持靶基因沉默塑造 RDC 复合物进化的模型。