Dorador Ana P, Dalikova Martina, Cerbin Stefan, Stillman Chris M, Zych Molly G, Hawley R Scott, Miller Danny E, Ray David A, Funikov Sergei Y, Evgen'ev Michael B, Blumenstiel Justin P
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Biology (Basel). 2022 Oct 9;11(10):1480. doi: 10.3390/biology11101480.
First discovered in maize, paramutation is a phenomenon in which one allele can trigger an epigenetic conversion of an alternate allele. This conversion causes a genetically heterozygous individual to transmit alleles that are functionally the same, in apparent violation of Mendelian segregation. Studies over the past several decades have revealed a strong connection between mechanisms of genome defense against transposable elements by small RNA and the phenomenon of paramutation. For example, a system of paramutation in Drosophila melanogaster has been shown to be mediated by piRNAs, whose primary function is to silence transposable elements in the germline. In this paper, we characterize a second system of piRNA-mediated paramutation-like behavior at the telomere of Drosophila virilis. In Drosophila, telomeres are maintained by arrays of retrotransposons that are regulated by piRNAs. As a result, the telomere and sub-telomeric regions of the chromosome have unique regulatory and chromatin properties. Previous studies have shown that maternally deposited piRNAs derived from a sub-telomeric piRNA cluster can silence the sub-telomeric center divider gene of Drosophila virilis in trans. In this paper, we show that this silencing can also be maintained in the absence of the original silencing allele in a subsequent generation. The precise mechanism of this paramutation-like behavior may be explained by either the production of retrotransposon piRNAs that differ across strains or structural differences in the telomere. Altogether, these results show that the capacity for piRNAs to mediate paramutation in trans may depend on the local chromatin environment and proximity to the uniquely structured telomere regulated by piRNAs. This system promises to provide significant insights into the mechanisms of paramutation.
副突变最早在玉米中被发现,是一种等位基因能够引发另一个等位基因表观遗传转化的现象。这种转化使得遗传上杂合的个体传递功能相同的等位基因,这显然违反了孟德尔分离定律。过去几十年的研究揭示了小RNA介导的基因组防御转座元件机制与副突变现象之间的紧密联系。例如,黑腹果蝇中的一个副突变系统已被证明是由piRNA介导的,其主要功能是在生殖系中沉默转座元件。在本文中,我们描述了在粗壮果蝇端粒处由piRNA介导的类似副突变行为的第二个系统。在果蝇中,端粒由受piRNA调控的逆转座子阵列维持。因此,染色体的端粒和亚端粒区域具有独特的调控和染色质特性。先前的研究表明,源自亚端粒piRNA簇的母源沉积piRNA可以反式沉默粗壮果蝇的亚端粒中心分隔基因。在本文中,我们表明这种沉默在后代中也可以在没有原始沉默等位基因的情况下得以维持。这种类似副突变行为的确切机制可能是由不同菌株间逆转座子piRNA的产生差异或端粒的结构差异来解释。总之,这些结果表明,piRNA介导反式副突变的能力可能取决于局部染色质环境以及与受piRNA调控的独特结构端粒的接近程度。这个系统有望为副突变机制提供重要见解。