Bao Zhaonan, Yang Jun, Shen Jian, Wang Cong, Li Yifan, Zhang Yan, Yang Guojing, Zhong Cheng, Xu Sanzhong, Xie Lijun, Shen Miaoda, Gou Zhongru
Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
Department of Orthopaedic Surgery, Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China.
J Mater Chem B. 2023 Mar 15;11(11):2417-2430. doi: 10.1039/d2tb02702j.
Silicate-based biomaterials-clinically applied fillers and promising candidates-can act as a highly biocompatible substrate for osteostimulative osteogenic cell growth and . These biomaterials have been proven to exhibit a variety of conventional morphologies in bone repair, including scaffolds, granules, coatings and cement pastes. Herein, we aim to develop a series of novel bioceramic fiber-derived granules with core-shell structures which have a hardystonite (HT) shell layer and changeable core components-that is, the chemical compositions of a core layer can be tuned to include a wide range of silicate candidates (, wollastonite (CSi)) with doping of functional ions (, Mg, P, and Sr). Meanwhile, it is versatile to control the biodegradation and bioactive ion release sufficiently for stimulating new bone growth after implantation. Our method employs rapidly gelling ultralong core-shell CSi@HT fibers derived from different polymer hydrosol-loaded inorganic powder slurries through the coaxially aligned bilayer nozzles, followed by cutting and sintering treatments. It was demonstrated that the nonstoichiometric CSi core component could contribute to faster bio-dissolution and biologically active ion release in tris buffer . The rabbit femoral bone defect repair experiments indicated that core-shell bioceramic granules with an 8% P-doped CSi-core could significantly stimulate osteogenic potential favorable for bone repair. It is worth concluding that such a tunable component distribution strategy in fiber-type bioceramic implants may develop new-generation composite biomaterials endowed with time-dependent biodegradation and high osteostimulative activities for a range of bone repair applications .
基于硅酸盐的生物材料——临床应用的填充剂和有潜力的候选材料——可作为促进成骨细胞生长的高生物相容性基质。这些生物材料已被证明在骨修复中呈现多种传统形态,包括支架、颗粒、涂层和水泥浆。在此,我们旨在开发一系列具有核壳结构的新型生物陶瓷纤维衍生颗粒,其具有硬硅钙石(HT)壳层和可变的核心成分,即核心层的化学成分可调整为包含多种硅酸盐候选物(如硅灰石(CSi))并掺杂功能离子(如Mg、P和Sr)。同时,能够充分控制生物降解和生物活性离子释放,以刺激植入后新骨生长。我们的方法是通过同轴排列的双层喷嘴,从不同的负载聚合物水溶胶的无机粉末浆料中制备快速凝胶化的超长核壳CSi@HT纤维,随后进行切割和烧结处理。结果表明,非化学计量的CSi核心成分可促进在三羟甲基氨基甲烷缓冲液中更快的生物溶解和生物活性离子释放。兔股骨骨缺损修复实验表明,具有8% P掺杂CSi核心的核壳生物陶瓷颗粒可显著刺激有利于骨修复的成骨潜力。值得总结的是,这种纤维型生物陶瓷植入物中可调节的成分分布策略可能会开发出新一代复合生物材料,具有随时间变化的生物降解性和高骨刺激活性,适用于一系列骨修复应用。