Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA.
Department of Chemistry and Biochemistry, Samford University, 800 Lakeshore Drive, Homewood, AL, 35229, USA.
J Biol Inorg Chem. 2023 Apr;28(3):285-299. doi: 10.1007/s00775-023-01990-7. Epub 2023 Feb 21.
Thiol dioxygenases are a subset of non-heme mononuclear iron oxygenases that catalyze the O-dependent oxidation of thiol-bearing substrates to yield sulfinic acid products. Cysteine dioxygenase (CDO) and 3-mercaptopropionic acid (3MPA) dioxygenase (MDO) are the most extensively characterized members of this enzyme family. As with many non-heme mononuclear iron oxidase/oxygenases, CDO and MDO exhibit an obligate-ordered addition of organic substrate before dioxygen. As this substrate-gated O-reactivity extends to the oxygen-surrogate, nitric oxide (NO), EPR spectroscopy has long been used to interrogate the [substrate:NO:enzyme] ternary complex. In principle, these studies can be extrapolated to provide information about transient iron-oxo intermediates produced during catalytic turnover with dioxygen. In this work, we demonstrate that cyanide mimics the native thiol-substrate in ordered-addition experiments with MDO cloned from Azotobacter vinelandii (AvMDO). Following treatment of the catalytically active Fe(II)-AvMDO with excess cyanide, addition of NO yields a low-spin (S = 1/2) (CN/NO)-Fe-complex. Continuous wave and pulsed X-band EPR characterization of this complex produced in wild-type and H157N variant AvMDO reveal multiple nuclear hyperfine features diagnostic of interactions within the first- and outer-coordination sphere of the enzymatic Fe-site. Spectroscopically validated computational models indicate simultaneous coordination of two cyanide ligands replaces the bidentate (thiol and carboxylate) coordination of 3MPA allowing for NO-binding at the catalytically relevant O-binding site. This promiscuous substrate-gated reactivity of AvMDO with NO provides an instructive counterpoint to the high substrate-specificity exhibited by mammalian CDO for L-cysteine.
硫醇双加氧酶是一类非血红素单核铁氧合酶,可催化含硫醇的底物的 O 依赖性氧化,生成亚磺酸产物。半胱氨酸双加氧酶 (CDO) 和 3-巯基丙酸 (3MPA) 双加氧酶 (MDO) 是该酶家族中研究最广泛的成员。与许多非血红素单核铁氧化酶/加氧酶一样,CDO 和 MDO 在双加氧酶之前表现出有机底物的必需顺序添加。由于这种底物门控 O 反应性扩展到氧类似物一氧化氮 (NO),EPR 光谱长期以来一直用于研究 [底物:NO:酶] 三元络合物。原则上,这些研究可以外推以提供在催化循环中与氧气反应时产生的瞬态铁氧中间体的信息。在这项工作中,我们证明氰化物在从固氮菌 (Azotobacter vinelandii) 克隆的 MDO (AvMDO) 的有序添加实验中模拟天然硫醇底物。在用过量氰化物处理催化活性的 Fe(II)-AvMDO 后,添加 NO 会产生低自旋 (S = 1/2) (CN/NO)-Fe 配合物。在野生型和 H157N 变体 AvMDO 中产生的该配合物的连续波和脉冲 X 波段 EPR 表征揭示了多个核超精细特征,这些特征可诊断酶 Fe 位的第一和外层配位球内的相互作用。经光谱验证的计算模型表明,两个氰化物配体的同时配位取代了 3MPA 的双齿 (硫醇和羧酸盐) 配位,从而允许在催化相关的 O 结合位点结合 NO。AvMDO 与 NO 的这种混杂的底物门控反应为哺乳动物 CDO 对 L-半胱氨酸表现出的高底物特异性提供了一个有益的对比。