Suppr超能文献

ANNet:一种用于物联网边缘传感器中心电图异常检测的轻量级神经网络。

ANNet: A Lightweight Neural Network for ECG Anomaly Detection in IoT Edge Sensors.

作者信息

Sivapalan Gawsalyan, Nundy Koushik Kumar, Dev Soumyabrata, Cardiff Barry, John Deepu

出版信息

IEEE Trans Biomed Circuits Syst. 2022 Feb;16(1):24-35. doi: 10.1109/TBCAS.2021.3137646. Epub 2022 May 9.

Abstract

In this paper, we propose a lightweight neural network for real-time electrocardiogram (ECG) anomaly detection and system level power reduction of wearable Internet of Things (IoT) Edge sensors. The proposed network utilizes a novel hybrid architecture consisting of Long Short Term Memory (LSTM) cells and Multi-Layer Perceptrons (MLP). The LSTM block takes a sequence of coefficients representing the morphology of ECG beats while the MLP input layer is fed with features derived from instantaneous heart rate. Simultaneous training of the blocks pushes the overall network to learn distinct features complementing each other for making decisions. The network was evaluated in terms of accuracy, computational complexity, and power consumption using data from the MIT-BIH arrhythmia database. To address the class imbalance in the dataset, we augmented the dataset using SMOTE algorithm for network training. The network achieved an average classification accuracy of 97% across several records in the database. Further, the network was mapped to a fixed point model, retrained in a bit accurate fixed-point environment to compensate for the quantization error, and ported to an ARM Cortex M4 based embedded platform. In laboratory testing, the overall system was successfully demonstrated, and a significant saving of ≅ 50% power was achieved by gating the wireless transmission using the classifier. Wireless transmission was enabled only to transmit the beats deemed anomalous by the classifier. The proposed technique compares favourably with current methods in terms of computational complexity and has the advantage of stand-alone operation in the edge node, without the need for always-on wireless connectivity making it ideal for IoT wearable devices.

摘要

在本文中,我们提出了一种轻量级神经网络,用于实时心电图(ECG)异常检测以及可穿戴物联网(IoT)边缘传感器的系统级功耗降低。所提出的网络采用了一种新颖的混合架构,由长短期记忆(LSTM)单元和多层感知器(MLP)组成。LSTM模块接收代表心电图搏动形态的一系列系数,而MLP输入层则被输入从瞬时心率导出的特征。对这些模块的同时训练促使整个网络学习相互补充的独特特征以进行决策。使用来自麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心律失常数据库的数据,对该网络在准确性、计算复杂度和功耗方面进行了评估。为了解决数据集中的类别不平衡问题,我们使用合成少数过采样技术(SMOTE)算法对数据集进行扩充以用于网络训练。该网络在数据库中的多个记录上实现了97%的平均分类准确率。此外,该网络被映射到定点模型,在定点精确环境中重新训练以补偿量化误差,并移植到基于ARM Cortex M4的嵌入式平台。在实验室测试中,成功展示了整个系统,并且通过使用分类器控制无线传输实现了约50%的显著功耗节省。仅在传输被分类器判定为异常的搏动时才启用无线传输。所提出的技术在计算复杂度方面与当前方法相比具有优势,并且具有在边缘节点独立运行的优点,无需始终开启的无线连接,这使其成为物联网可穿戴设备的理想选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验