Suppr超能文献

CYP6ER1 的重要性在不同新烟碱类杀虫剂的敏感性中有所不同。

Importance of CYP6ER1 Was Different among Neonicotinoids in Their Susceptibility in .

机构信息

Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.

Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China.

出版信息

J Agric Food Chem. 2023 Mar 8;71(9):4163-4171. doi: 10.1021/acs.jafc.2c07692. Epub 2023 Feb 22.

Abstract

overexpression is a prevalent mechanism for neonicotinoid resistance in . Except for imidacloprid, the metabolism of other neonicotinoids by CYP6ER1 lacked direct evidence. In this study, a knockout strain () was constructed using the CRISPR/Cas9 strategy. The strain showed much higher susceptibility to imidacloprid and thiacloprid with an SI (sensitivity index, LC of WT/LC of ) of over 100, which was 10-30 for four neonicotinoids (acetamiprid, nitenpyram, clothianidin, and dinotefuran) and less than 5 for flupyradifurone and sulfoxaflor. Recombinant CYP6ER1 showed the highest activity to metabolize imidacloprid and thiacloprid and moderate activity for the other four neonicotinoids. Main metabolite identification and oxidation site prediction revealed that CYP6ER1 activities were insecticide structure-dependent. The most potential oxidation site of imidacloprid and thiacloprid was located in the five-membered heterocycle with hydroxylation activity. For the other four neonicotinoids, the potential site was within the ring opening of a five-membered heterocycle, indicating -desmethyl activity.

摘要

过表达是新烟碱类杀虫剂抗性的一种普遍机制。除了吡虫啉外,CYP6ER1 对其他新烟碱类杀虫剂的代谢缺乏直接证据。在本研究中,使用 CRISPR/Cas9 策略构建了一个 基因敲除菌株()。该菌株对吡虫啉和噻虫啉表现出更高的敏感性,敏感性指数(WT 的 LC/LC)超过 100,而对四种新烟碱类杀虫剂(乙酰甲胺磷、吡虫啉、噻虫嗪和噻虫啉)的敏感性指数为 10-30,对氟吡呋喃酮和氟啶虫酰胺的敏感性指数小于 5。重组 CYP6ER1 对吡虫啉和噻虫啉表现出最高的代谢活性,对其他四种新烟碱类杀虫剂表现出中等的代谢活性。主要代谢产物的鉴定和氧化部位预测表明,CYP6ER1 的活性取决于杀虫剂的结构。吡虫啉和噻虫啉最有可能的氧化部位位于具有羟化活性的五元杂环中。对于其他四种新烟碱类杀虫剂,潜在的部位位于五元杂环的开环内,表明 -去甲基化活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验