Suppr超能文献

利用电子健康记录数据对临床儿科肥胖亚型进行特征描述。

Characterizing clinical pediatric obesity subtypes using electronic health record data.

作者信息

Campbell Elizabeth A, Maltenfort Mitchell G, Shults Justine, Forrest Christopher B, Masino Aaron J

机构信息

Department of Information Science, College of Computing & Informatics, Drexel University, Philadelphia, Pennsylvania, United States of America.

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America.

出版信息

PLOS Digit Health. 2022 Aug 4;1(8):e0000073. doi: 10.1371/journal.pdig.0000073. eCollection 2022 Aug.

Abstract

In this work, we present a study of electronic health record (EHR) data that aims to identify pediatric obesity clinical subtypes. Specifically, we examine whether certain temporal condition patterns associated with childhood obesity incidence tend to cluster together to characterize subtypes of clinically similar patients. In a previous study, the sequence mining algorithm, SPADE was implemented on EHR data from a large retrospective cohort (n = 49 594 patients) to identify common condition trajectories surrounding pediatric obesity incidence. In this study, we used Latent Class Analysis (LCA) to identify potential subtypes formed by these temporal condition patterns. The demographic characteristics of patients in each subtype are also examined. An LCA model with 8 classes was developed that identified clinically similar patient subtypes. Patients in Class 1 had a high prevalence of respiratory and sleep disorders, patients in Class 2 had high rates of inflammatory skin conditions, patients in Class 3 had a high prevalence of seizure disorders, and patients in Class 4 had a high prevalence of Asthma. Patients in Class 5 lacked a clear characteristic morbidity pattern, and patients in Classes 6, 7, and 8 had a high prevalence of gastrointestinal issues, neurodevelopmental disorders, and physical symptoms respectively. Subjects generally had high membership probability for a single class (>70%), suggesting shared clinical characterization within the individual groups. We identified patient subtypes with temporal condition patterns that are significantly more common among obese pediatric patients using a Latent Class Analysis approach. Our findings may be used to characterize the prevalence of common conditions among newly obese pediatric patients and to identify pediatric obesity subtypes. The identified subtypes align with prior knowledge on comorbidities associated with childhood obesity, including gastro-intestinal, dermatologic, developmental, and sleep disorders, as well as asthma.

摘要

在这项研究中,我们展示了一项针对电子健康记录(EHR)数据的研究,旨在识别儿童肥胖的临床亚型。具体而言,我们研究了某些与儿童肥胖发病率相关的时间性病症模式是否倾向于聚集在一起,以表征临床相似患者的亚型。在之前的一项研究中,序列挖掘算法SPADE被应用于来自一个大型回顾性队列(n = 49594名患者)的EHR数据,以识别围绕儿童肥胖发病率的常见病症轨迹。在本研究中,我们使用潜在类别分析(LCA)来识别由这些时间性病症模式形成的潜在亚型。我们还检查了每个亚型患者的人口统计学特征。开发了一个具有8个类别的LCA模型,该模型识别出了临床相似的患者亚型。第1类患者中呼吸和睡眠障碍的患病率较高,第2类患者中炎症性皮肤病的发生率较高,第3类患者中癫痫障碍的患病率较高,第4类患者中哮喘的患病率较高。第5类患者缺乏明确的特征性发病模式,而第6、7和8类患者中胃肠道问题、神经发育障碍和身体症状的患病率分别较高。受试者通常对单个类别具有较高的归属概率(>70%),这表明各个组内具有共同的临床特征。我们使用潜在类别分析方法识别出了具有时间性病症模式的患者亚型,这些模式在肥胖儿科患者中明显更为常见。我们的研究结果可用于表征新肥胖儿科患者中常见病症的患病率,并识别儿童肥胖亚型。所识别的亚型与先前关于儿童肥胖相关合并症的知识一致,包括胃肠道、皮肤病、发育和睡眠障碍以及哮喘。

相似文献

10
Four subtypes of childhood allergic rhinitis identified by latent class analysis.四类儿童变应性鼻炎的潜在类别分析。
Pediatr Allergy Immunol. 2021 Nov;32(8):1691-1699. doi: 10.1111/pai.13605. Epub 2021 Aug 5.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验