Suppr超能文献

静电门控用固态电解质的全控

Full Control of Solid-State Electrolytes for Electrostatic Gating.

机构信息

Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland.

Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, Geneva, CH-1211, Switzerland.

出版信息

Adv Mater. 2023 May;35(18):e2211993. doi: 10.1002/adma.202211993. Epub 2023 Mar 23.

Abstract

Ionic gating is a powerful technique to realize field-effect transistors (FETs) enabling experiments not possible otherwise. So far, ionic gating has relied on the use of top electrolyte gates, which pose experimental constraints and make device fabrication complex. Promising results obtained recently in FETs based on solid-state electrolytes remain plagued by spurious phenomena of unknown origin, preventing proper transistor operation, and causing limited control and reproducibility. Here, a class of solid-state electrolytes for gating (Lithium-ion conducting glass-ceramics, LICGCs) is explored, the processes responsible for the spurious phenomena and irreproducible behavior are identified, and properly functioning transistors exhibiting high density ambipolar operation with gate capacitance of ≈ (depending on the polarity of the accumulated charges) are demonstrated. Using 2D semiconducting transition-metal dichalcogenides, the ability to implement ionic-gate spectroscopy to determine the semiconducting bandgap, and to accumulate electron densities above 10 cm are demostrated, resulting in gate-induced superconductivity in MoS multilayers. As LICGCs are implemented in a back-gate configuration, they leave the surface of the material exposed, enabling the use of surface-sensitive techniques (such as scanning tunneling microscopy and photoemission spectroscopy) impossible so far in ionic-gated devices. They also allow double ionic gated devices providing independent control of charge density and electric field.

摘要

离子门控是一种强大的技术,可以实现场效应晶体管(FET),从而实现其他方法无法实现的实验。到目前为止,离子门控依赖于使用顶部电解质门,这会带来实验限制并使器件制造复杂化。最近在基于固态电解质的 FET 中获得的有希望的结果仍然受到未知来源的杂散现象的困扰,这些现象会阻止晶体管正常工作,并导致控制和重现性有限。在这里,研究了一类用于门控的固态电解质(锂离子导电玻璃陶瓷,LICGCs),确定了导致杂散现象和不可重现行为的过程,并展示了具有高密度双极性操作和≈ 的栅电容(取决于积累电荷的极性)的正常工作晶体管。使用二维半导体过渡金属二卤化物,展示了实施离子门控光谱以确定半导体能隙和积累高于 10 cm 的电子密度的能力,导致 MoS 多层的栅极诱导超导电性。由于 LICGCs 采用背栅配置,它们使材料的表面暴露出来,从而能够使用迄今为止在离子门控器件中不可能使用的表面敏感技术(如扫描隧道显微镜和光发射光谱)。它们还允许双离子门控器件,提供对电荷密度和电场的独立控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验