Suppr超能文献

用于预测水稻中蛋白质-蛋白质相互作用的计算模型以及…… (原文此处不完整)

Computational models for prediction of protein-protein interaction in rice and .

作者信息

Karan Biswajit, Mahapatra Satyajit, Sahu Sitanshu Sekhar, Pandey Dev Mani, Chakravarty Sumit

机构信息

Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India.

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India.

出版信息

Front Plant Sci. 2023 Feb 1;13:1046209. doi: 10.3389/fpls.2022.1046209. eCollection 2022.

Abstract

INTRODUCTION

Plant-microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice () due to () fungus. Protein-protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease.

METHODS

In this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between and in a whole-genome scale.

RESULTS AND DISCUSSION

A total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen-host datasets where less accuracy is obtained, which confirmed that the model is specific to and Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.

摘要

引言

植物与微生物的相互作用在制定应对病原体引发的破坏性疾病策略中起着至关重要的作用,这些疾病每年都会导致巨大的作物损失。稻瘟病是由真菌引起的水稻严重病害之一。水稻与真菌之间的蛋白质-蛋白质相互作用(PPI)在引发稻瘟病中起关键作用。

方法

本文开发了四种基于基因组信息的模型,即(i)互作同源物、(ii)结构域、(iii)基因本体和(iv)基于系统发育的模型,用于在全基因组规模上预测水稻和稻瘟病菌之间的相互作用。

结果与讨论

从这四种模型中总共获得了1801个水稻蛋白和135个稻瘟病菌蛋白之间的59430个相互作用对。此外,还开发了一个机器学习模型来评估预测的相互作用。使用基于组成的氨基酸组成(AAC)和三联体组合(CT)特征,分别实现了88%和89%的准确率。在实验数据集上进行测试时,CT特征的准确率最高,为95%。此外,该模型的特异性在其他病原体-宿主数据集上得到验证,在这些数据集上获得的准确率较低,这证实了该模型对水稻和稻瘟病菌具有特异性。了解水稻对稻瘟病菌抗性背后的分子过程始于对PPI的识别,这些预测的PPI将对植物科学界的药物设计有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ec/9929577/d0bf81af55b6/fpls-13-1046209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验