Suppr超能文献

基于混合分子指纹图谱和集成学习的配体生物活性预测

Biological Activity Predictions of Ligands Based on Hybrid Molecular Fingerprinting and Ensemble Learning.

作者信息

Li Mengshan, Zeng Ming, Zhang Hang, Chen Huijie, Guan Lixin

机构信息

College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi341000, China.

出版信息

ACS Omega. 2023 Feb 1;8(6):5561-5570. doi: 10.1021/acsomega.2c06944. eCollection 2023 Feb 14.

Abstract

The biological activity predictions of ligands are an important research direction, which can improve the efficiency and success probability of drug screening. However, the traditional prediction method has the disadvantages of complex modeling and low screening efficiency. Machine learning is considered an important research direction to solve these traditional method problems in the near future. This paper proposes a machine learning model with high predictive accuracy and stable prediction ability, namely, the back propagation neural network cross-support vector regression model (BPCSVR). By comparing multiple molecular descriptors, MACCS fingerprint and ECFP6 fingerprint were selected as inputs, and the stable prediction ability of the model was improved by integrating multiple models and correcting similar samples. We used leave-one-out cross-validation on 3038 samples from six data sets. The coefficient of determination, root mean square error, and absolute error were used as the evaluation parameters. After comparing the multiclass models, the results show that the BPCSVR model has stable prediction ability in different data sets, and the prediction accuracy is higher than other comparison models.

摘要

配体的生物活性预测是一个重要的研究方向,它可以提高药物筛选的效率和成功率。然而,传统的预测方法存在建模复杂和筛选效率低的缺点。机器学习被认为是在不久的将来解决这些传统方法问题的一个重要研究方向。本文提出了一种具有高预测精度和稳定预测能力的机器学习模型,即反向传播神经网络交叉支持向量回归模型(BPCSVR)。通过比较多种分子描述符,选择MACCS指纹和ECFP6指纹作为输入,并通过集成多个模型和校正相似样本提高了模型的稳定预测能力。我们对来自六个数据集的3038个样本进行了留一法交叉验证。使用决定系数、均方根误差和绝对误差作为评估参数。在比较多类模型后,结果表明BPCSVR模型在不同数据集中具有稳定的预测能力,且预测精度高于其他比较模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7143/9933080/c114c31ac1a3/ao2c06944_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验