Saito Hironori, Osaki Tatsuya, Ikeuchi Yoshiho, Iwasaki Shintaro
RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
Bio Protoc. 2023 Feb 5;13(3). doi: 10.21769/BioProtoc.4602.
In addition to cytosolic protein synthesis, mitochondria also utilize another translation system that is tailored for mRNAs encoded in the mitochondrial genome. The importance of mitochondrial protein synthesis has been exemplified by the diverse diseases associated with in organello translation deficiencies. Various methods have been developed to monitor mitochondrial translation, such as the classic method of labeling newly synthesized proteins with radioisotopes and the more recent ribosome profiling. However, since these methods always assess the average cell population, measuring the mitochondrial translation capacity in individual cells has been challenging. To overcome this issue, we recently developed mito-fluorescent noncanonical amino acid tagging (FUNCAT) fluorescence-activated cell sorting (FACS), which labels nascent peptides generated by mitochondrial ribosomes with a methionine analog, L-homopropargylglycine (HPG), conjugates the peptides with fluorophores by an in situ click reaction, and detects the signal in individual cells by FACS equipment. With this methodology, the hidden heterogeneity of mitochondrial translation in cell populations can be addressed.
除了胞质蛋白合成外,线粒体还利用另一种翻译系统,该系统是为线粒体基因组编码的mRNA量身定制的。线粒体蛋白合成的重要性已通过与细胞器内翻译缺陷相关的多种疾病得到例证。已经开发了各种方法来监测线粒体翻译,例如用放射性同位素标记新合成蛋白质的经典方法和最近的核糖体分析。然而,由于这些方法总是评估平均细胞群体,因此测量单个细胞中的线粒体翻译能力一直具有挑战性。为了克服这个问题,我们最近开发了线粒体荧光非经典氨基酸标记(FUNCAT)荧光激活细胞分选(FACS)技术,该技术用甲硫氨酸类似物L-高炔丙基甘氨酸(HPG)标记线粒体核糖体产生的新生肽,通过原位点击反应将肽与荧光团偶联,并通过FACS设备检测单个细胞中的信号。通过这种方法,可以解决细胞群体中线粒体翻译隐藏的异质性问题。