Suppr超能文献

脓毒症中细胞焦亡相关基因的诊断和预测价值。

Diagnostic and predictive values of pyroptosis-related genes in sepsis.

机构信息

School of Clinical Medicine, Tsinghua University, Beijing, China.

Department of General Medicine, Beijing Tsinghua Changgung Hospital affiliated to Tsinghua University, Beijing, China.

出版信息

Front Immunol. 2023 Feb 2;14:1105399. doi: 10.3389/fimmu.2023.1105399. eCollection 2023.

Abstract

BACKGROUND

Sepsis is an organ dysfunction syndrome caused by the body's dysregulated response to infection. Yet, due to the heterogeneity of this disease process, the diagnosis and definition of sepsis is a critical issue in clinical work. Existing methods for early diagnosis of sepsis have low specificity.

AIMS

This study evaluated the diagnostic and predictive values of pyroptosis-related genes in normal and sepsis patients and their role in the immune microenvironment using multiple bioinformatics analyses and machine-learning methods.

METHODS

Pediatric sepsis microarray datasets were screened from the GEO database and the differentially expressed genes (DEGs) associated with pyroptosis were analyzed. DEGs were then subjected to multiple bioinformatics analyses. The differential immune landscape between sepsis and healthy controls was explored by screening diagnostic genes using various machine-learning models. Also, the diagnostic value of these diagnosis-related genes in sepsis (miRNAs that have regulatory relationships with genes and related drugs that have regulatory relationships) were analyzed in the internal test set and external test.

RESULTS

Eight genes (CLEC5A, MALT1, NAIP, NLRC4, SERPINB1, SIRT1, STAT3, and TLR2) related to sepsis diagnosis were screened by multiple machine learning algorithms. The CIBERSORT algorithm confirmed that these genes were significantly correlated with the infiltration abundance of some immune cells and immune checkpoint sites (all <0.05). SIRT1, STAT3, and TLR2 were identified by the DGIdb database as potentially regulated by multiple drugs. Finally, 7 genes were verified to have significantly different expressions between the sepsis group and the control group (<0.05).

CONCLUSION

The pyroptosis-related genes identified and verified in this study may provide a useful reference for the prediction and assessment of sepsis.

摘要

背景

脓毒症是一种器官功能障碍综合征,由机体对感染的失调反应引起。然而,由于该病过程的异质性,脓毒症的诊断和定义是临床工作中的一个关键问题。现有的脓毒症早期诊断方法特异性低。

目的

本研究通过多种生物信息学分析和机器学习方法,评估了正常和脓毒症患者中与细胞焦亡相关的基因的诊断和预测价值及其在免疫微环境中的作用。

方法

从 GEO 数据库筛选儿科脓毒症微阵列数据集,分析与细胞焦亡相关的差异表达基因(DEGs)。然后对 DEGs 进行多种生物信息学分析。通过筛选不同的机器学习模型,分析诊断基因,探讨脓毒症与健康对照之间的差异免疫图谱。还在内部测试集和外部测试中分析了这些诊断相关基因在脓毒症中的诊断价值(与基因有调控关系的 miRNA 和有调控关系的相关药物)。

结果

通过多种机器学习算法筛选出 8 个与脓毒症诊断相关的基因(CLEC5A、MALT1、NAIP、NLRC4、SERPINB1、SIRT1、STAT3 和 TLR2)。CIBERSORT 算法证实这些基因与某些免疫细胞浸润丰度和免疫检查点显著相关(均<0.05)。DGIdb 数据库确定 SIRT1、STAT3 和 TLR2 可能受多种药物调控。最后,在脓毒症组和对照组之间,有 7 个基因被验证存在显著差异表达(<0.05)。

结论

本研究中鉴定和验证的细胞焦亡相关基因可能为脓毒症的预测和评估提供有用的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3363/9932037/3e21cd0ca9e0/fimmu-14-1105399-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验