文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探讨使用机器学习算法在脓毒症诊断中不同细胞死亡相关基因的作用。

Exploring the Role of Different Cell-Death-Related Genes in Sepsis Diagnosis Using a Machine Learning Algorithm.

机构信息

School of Clinical Medicine, Tsinghua University, Beijing 100190, China.

Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China.

出版信息

Int J Mol Sci. 2023 Sep 29;24(19):14720. doi: 10.3390/ijms241914720.


DOI:10.3390/ijms241914720
PMID:37834169
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10572834/
Abstract

Sepsis, a disease caused by severe infection, has a high mortality rate. At present, there is a lack of reliable algorithmic models for biomarker mining and diagnostic model construction for sepsis. Programmed cell death (PCD) has been shown to play a vital role in disease occurrence and progression, and different PCD-related genes have the potential to be targeted for the treatment of sepsis. In this paper, we analyzed PCD-related genes in sepsis. Implicated PCD processes include apoptosis, necroptosis, ferroptosis, pyroptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, and alkaliptosis. We screened for diagnostic-related genes and constructed models for diagnosing sepsis using multiple machine-learning models. In addition, the immune landscape of sepsis was analyzed based on the diagnosis-related genes that were obtained. In this paper, 10 diagnosis-related genes were screened for using machine learning algorithms, and diagnostic models were constructed. The diagnostic model was validated in the internal and external test sets, and the Area Under Curve (AUC) reached 0.7951 in the internal test set and 0.9627 in the external test set. Furthermore, we verified the diagnostic gene via a qPCR experiment. The diagnostic-related genes and diagnostic genes obtained in this paper can be utilized as a reference for clinical sepsis diagnosis. The results of this study can act as a reference for the clinical diagnosis of sepsis and for target discovery for potential therapeutic drugs.

摘要

脓毒症是一种由严重感染引起的疾病,死亡率很高。目前,缺乏可靠的算法模型来挖掘生物标志物和构建脓毒症诊断模型。程序性细胞死亡(PCD)已被证明在疾病的发生和发展中起着至关重要的作用,不同的与 PCD 相关的基因有可能成为脓毒症治疗的靶点。在本文中,我们分析了脓毒症中的 PCD 相关基因。涉及的 PCD 过程包括细胞凋亡、坏死性凋亡、铁死亡、细胞焦亡、细胞坏死、自噬依赖性细胞死亡、细胞自噬、细胞程序性坏死、细胞内溶酶体依赖的细胞死亡、过氧化物酶体依赖性细胞死亡和碱中毒。我们使用多种机器学习模型筛选了与诊断相关的基因,并构建了用于诊断脓毒症的模型。此外,还基于获得的诊断相关基因分析了脓毒症的免疫景观。本文使用机器学习算法筛选出 10 个诊断相关基因,并构建了诊断模型。该诊断模型在内、外部测试集中进行了验证,内部测试集的 AUC 达到 0.7951,外部测试集的 AUC 达到 0.9627。此外,我们通过 qPCR 实验验证了诊断基因。本文获得的诊断相关基因和诊断基因可作为临床脓毒症诊断的参考。本研究结果可作为脓毒症临床诊断的参考,也可作为潜在治疗药物靶点的发现参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/06f9cb1fd1c7/ijms-24-14720-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/afc52190dfde/ijms-24-14720-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/c47139dd7e03/ijms-24-14720-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/dcc18300f1d9/ijms-24-14720-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/baca1c13618e/ijms-24-14720-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/6a91486a9ab6/ijms-24-14720-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/88dc5cf2f399/ijms-24-14720-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/3fe8285e15fc/ijms-24-14720-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/16c5ec6b03ac/ijms-24-14720-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/06f9cb1fd1c7/ijms-24-14720-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/afc52190dfde/ijms-24-14720-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/c47139dd7e03/ijms-24-14720-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/dcc18300f1d9/ijms-24-14720-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/baca1c13618e/ijms-24-14720-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/6a91486a9ab6/ijms-24-14720-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/88dc5cf2f399/ijms-24-14720-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/3fe8285e15fc/ijms-24-14720-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/16c5ec6b03ac/ijms-24-14720-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f3/10572834/06f9cb1fd1c7/ijms-24-14720-g009.jpg

相似文献

[1]
Exploring the Role of Different Cell-Death-Related Genes in Sepsis Diagnosis Using a Machine Learning Algorithm.

Int J Mol Sci. 2023-9-29

[2]
Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.

J Cancer Res Clin Oncol. 2023-10

[3]
Machine learning-based biomarker screening for acute myeloid leukemia prognosis and therapy from diverse cell-death patterns.

Sci Rep. 2024-8-2

[4]
Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing.

Comput Biol Med. 2024-2

[5]
Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery.

Int J Surg. 2022-11

[6]
Exploration of programmed cell death-associated characteristics and immune infiltration in neonatal sepsis: new insights from bioinformatics analysis and machine learning.

BMC Pediatr. 2024-1-20

[7]
A novel signature based on twelve programmed cell death patterns to predict the prognosis of lung adenocarcinoma.

Am J Transl Res. 2024-5-15

[8]
Machine learning reveals ferroptosis features and a novel ferroptosis classifier in patients with sepsis.

Immun Inflamm Dis. 2024-5

[9]
Constructing a Prognostic Model of Uterine Corpus Endometrial Carcinoma and Predicting Drug-Sensitivity Responses Using Programmed Cell Death-Related Pathways.

J Cancer. 2024-3-31

[10]
Identification of immune-related endoplasmic reticulum stress genes in sepsis using bioinformatics and machine learning.

Front Immunol. 2022

引用本文的文献

[1]
Screening and analysis of programmed cell death related genes and targeted drugs in sepsis.

Hereditas. 2025-3-19

[2]
Leveraging diverse cell-death patterns in diagnosis of sepsis by integrating bioinformatics and machine learning.

PeerJ. 2025-2-26

[3]
Revealing the heterogeneity of treatment resistance in less-defined subtype diffuse large B cell lymphoma patients by integrating programmed cell death patterns and liquid biopsy.

Clin Transl Med. 2025-1

[4]
Autophagy and machine learning: Unanswered questions.

Biochim Biophys Acta Mol Basis Dis. 2024-8

[5]
Analyzing the involvement of diverse cell death-related genes in diffuse large B-cell lymphoma using bioinformatics techniques.

Heliyon. 2024-5-7

本文引用的文献

[1]
Applying dual models on optimized LSTM with U-net segmentation for breast cancer diagnosis using mammogram images.

Artif Intell Med. 2023-9

[2]
Ciclopirox mitigates inflammatory response in LPS-induced septic shock via inactivation of SORT1-mediated wnt/β-Catenin signaling pathway.

Immunopharmacol Immunotoxicol. 2023-12

[3]
Identification and validation of a novel mitochondrion-related gene signature for diagnosis and immune infiltration in sepsis.

Front Immunol. 2023

[4]
Application Prospect of the SOFA Score and Related Modification Research Progress in Sepsis.

J Clin Med. 2023-5-16

[5]
A Novel Longitudinal Phenotype-Genotype Association Study Based on Deep Feature Extraction and Hypergraph Models for Alzheimer's Disease.

Biomolecules. 2023-4-23

[6]
Identification of autophagy-related genes and immune cell infiltration characteristics in sepsis via bioinformatic analysis.

J Thorac Dis. 2023-4-28

[7]
Mast cell activation mediates blood-brain barrier impairment and cognitive dysfunction in septic mice in a histamine-dependent pathway.

Front Immunol. 2023

[8]
Diagnostic and predictive values of pyroptosis-related genes in sepsis.

Front Immunol. 2023

[9]
Deficiency of S100A9 Alleviates Sepsis-Induced Acute Liver Injury through Regulating AKT-AMPK-Dependent Mitochondrial Energy Metabolism.

Int J Mol Sci. 2023-1-20

[10]
Predicting the prognosis in patients with sepsis by a pyroptosis-related gene signature.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索