Suppr超能文献

通过神经群体动力学进行计算。

Computation Through Neural Population Dynamics.

机构信息

Department of Bioengineering, Stanford University, Stanford, California 94305, USA; email:

Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, USA.

出版信息

Annu Rev Neurosci. 2020 Jul 8;43:249-275. doi: 10.1146/annurev-neuro-092619-094115.

Abstract

Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover the nature of the associated computations, how they are implemented, and what role they play in driving behavior. We term this computation through neural population dynamics. If successful, this framework will reveal general motifs of neural population activity and quantitatively describe how neural population dynamics implement computations necessary for driving goal-directed behavior. Here, we start with a mathematical primer on dynamical systems theory and analytical tools necessary to apply this perspective to experimental data. Next, we highlight some recent discoveries resulting from successful application of dynamical systems. We focus on studies spanning motor control, timing, decision-making, and working memory. Finally, we briefly discuss promising recent lines of investigation and future directions for the computation through neural population dynamics framework.

摘要

大量的实验、计算和理论工作已经确定了相互连接的神经元群体协调活动中的丰富结构。现在面临的一个新挑战是揭示相关计算的本质、它们是如何实现的,以及它们在驱动行为中扮演什么角色。我们将其称为通过神经群体动力学进行计算。如果成功,这个框架将揭示神经群体活动的一般模式,并定量描述神经群体动力学如何实现驱动目标导向行为所需的计算。在这里,我们从动力系统理论的数学入门和将这一视角应用于实验数据所需的分析工具开始。接下来,我们重点介绍一些最近的发现,这些发现是成功应用动力系统的结果。我们关注的研究领域包括运动控制、定时、决策和工作记忆。最后,我们简要讨论了该神经群体动力学计算框架的一些有前途的近期研究方向和未来方向。

相似文献

1
Computation Through Neural Population Dynamics.通过神经群体动力学进行计算。
Annu Rev Neurosci. 2020 Jul 8;43:249-275. doi: 10.1146/annurev-neuro-092619-094115.
4
Shaping dynamical neural computations using spatiotemporal constraints.利用时空约束塑造动态神经计算。
Biochem Biophys Res Commun. 2024 Oct 8;728:150302. doi: 10.1016/j.bbrc.2024.150302. Epub 2024 Jun 25.
5
Computational aspects of feedback in neural circuits.神经回路中反馈的计算方面。
PLoS Comput Biol. 2007 Jan 19;3(1):e165. doi: 10.1371/journal.pcbi.0020165. Epub 2006 Oct 24.
6
Neural population codes.神经群体编码
Curr Opin Neurobiol. 2003 Apr;13(2):238-49. doi: 10.1016/s0959-4388(03)00034-5.
7
Neural circuits as computational dynamical systems.神经回路作为计算动力系统。
Curr Opin Neurobiol. 2014 Apr;25:156-63. doi: 10.1016/j.conb.2014.01.008. Epub 2014 Feb 5.

引用本文的文献

2
Theoretical neuroscience has room to grow.理论神经科学仍有发展空间。
Nat Rev Neurosci. 2025 Aug 20. doi: 10.1038/s41583-025-00965-8.
3
Speed modulations in grid cell information geometry.网格细胞信息几何中的速度调制
Nat Commun. 2025 Aug 19;16(1):7723. doi: 10.1038/s41467-025-62856-x.
8
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.
9
Cortical sculpting of a rhythmic motor program.节律性运动程序的皮质塑造
bioRxiv. 2025 Jun 21:2025.06.20.660772. doi: 10.1101/2025.06.20.660772.

本文引用的文献

2
Causal Role of Motor Preparation during Error-Driven Learning.错误驱动学习中运动准备的因果作用。
Neuron. 2020 Apr 22;106(2):329-339.e4. doi: 10.1016/j.neuron.2020.01.019. Epub 2020 Feb 12.
8
Internal models of sensorimotor integration regulate cortical dynamics.感觉运动整合的内部模型调节皮质动态。
Nat Neurosci. 2019 Nov;22(11):1871-1882. doi: 10.1038/s41593-019-0500-6. Epub 2019 Oct 7.
10
Cortical layer-specific critical dynamics triggering perception.皮层层特异性关键动力学触发感知。
Science. 2019 Aug 9;365(6453). doi: 10.1126/science.aaw5202. Epub 2019 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验