Suppr超能文献

多个泛素E3连接酶基因拮抗调节叶绿体相关蛋白降解。

Multiple ubiquitin E3 ligase genes antagonistically regulate chloroplast-associated protein degradation.

作者信息

Mohd Ali Sabri, Li Na, Soufi Ziad, Yao Jinrong, Johnson Errin, Ling Qihua, Jarvis R Paul

机构信息

Section of Molecular Plant Biology (Department of Biology) and Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.

University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

出版信息

Curr Biol. 2023 Mar 27;33(6):1138-1146.e5. doi: 10.1016/j.cub.2023.01.060. Epub 2023 Feb 22.

Abstract

The chloroplast is the most prominent member of a diverse group of plant organelles called the plastids, and it is characterized by its vital role in photosynthesis. Most of the ∼3,000 different proteins in chloroplasts are synthesized in the cytosol in precursor (preprotein) form, each with a cleavable transit peptide. Preproteins are imported via translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. Discovery of the chloroplast-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) demonstrated that the nucleocytosolic ubiquitin-proteasome system (UPS) targets the TOC apparatus to dynamically control protein import and chloroplast biogenesis in response to developmental and environmental cues. The relevant UPS pathway is termed chloroplast-associated protein degradation (CHLORAD). Two homologs of SP1 exist, SP1-like1 (SPL1) and SPL2, but their roles have remained obscure. Here, we show that SP1 is ubiquitous in the Viridiplantae and that SPL2 and SPL1 appeared early during the evolution of the Viridiplantae and land plants, respectively. Through genetic and biochemical analysis, we reveal that SPL1 functions as a negative regulator of SP1, potentially by interfering with its ability to catalyze ubiquitination. In contrast, SPL2, the more distantly related SP1 homolog, displays partial functional redundancy with SP1. Both SPL1 and SPL2 modify the extent of leaf senescence, like SP1, but do so in diametrically opposite ways. Thus, SPL1 and SPL2 are bona fide CHLORAD system components with negative and positive regulatory functions that allow for nuanced control of this vital proteolytic pathway.

摘要

叶绿体是植物细胞器中多样化群体里最为突出的成员,这些细胞器被称为质体,其特点是在光合作用中发挥着至关重要的作用。叶绿体中约3000种不同的蛋白质大多以前体(前体蛋白)形式在细胞质中合成,每种前体蛋白都带有一个可切割的转运肽。前体蛋白通过叶绿体被膜外膜和内膜上的转运体导入,分别称为外膜转运体(TOC)和内膜转运体(TIC)。叶绿体定位的泛素E3连接酶PPI1位点抑制因子1(SP1)的发现表明,核细胞质泛素-蛋白酶体系统(UPS)以TOC装置为靶标,以响应发育和环境线索来动态控制蛋白质导入和叶绿体生物发生。相关的UPS途径被称为叶绿体相关蛋白降解(CHLORAD)。存在SP1的两个同源物,即类SP1-1(SPL1)和SPL2,但它们的作用仍不清楚。在这里,我们表明SP1在绿藻植物中普遍存在,并且SPL2和SPL1分别在绿藻植物和陆地植物进化的早期出现。通过遗传和生化分析,我们揭示SPL1作为SP1的负调节因子发挥作用,可能是通过干扰其催化泛素化的能力。相比之下,与SP1亲缘关系更远的同源物SPL2与SP1表现出部分功能冗余。与SP1一样,SPL1和SPL2都能改变叶片衰老的程度,但方式截然相反。因此,SPL1和SPL2是真正的CHLORAD系统组件,具有负调控和正调控功能,能够对这一重要的蛋白水解途径进行细致入微的控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3d5/11913770/eeb27bde671b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验