Suppr超能文献

基于正交神经网络的中立型时滞微分方程数值解

Numerical solution of neutral delay differential equations using orthogonal neural network.

机构信息

Department of Mathematics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.

出版信息

Sci Rep. 2023 Feb 23;13(1):3164. doi: 10.1038/s41598-023-30127-8.

Abstract

In this paper, an efficient orthogonal neural network (ONN) approach is introduced to solve the higher-order neutral delay differential equations (NDDEs) with variable coefficients and multiple delays. The method is implemented by replacing the hidden layer of the feed-forward neural network with the orthogonal polynomial-based functional expansion block, and the corresponding weights of the network are obtained using an extreme learning machine(ELM) approach. Starting with simple delay differential equations (DDEs), an interest has been shown in solving NDDEs and system of NDDEs. Interest is given to consistency and convergence analysis, and it is seen that the method can produce a uniform closed-form solution with an error of order [Formula: see text], where n is the number of neurons. The developed neural network method is validated over various types of example problems(DDEs, NDDEs, and system of NDDEs) with four different types of special orthogonal polynomials.

摘要

本文提出了一种有效的正交神经网络(ONN)方法,用于求解具有变系数和多个时滞的高阶中立型时滞微分方程(NDDE)。该方法通过用基于正交多项式的函数展开块替换前馈神经网络的隐藏层,并使用极限学习机(ELM)方法获得网络的相应权重来实现。从简单的时滞微分方程(DDE)开始,人们对求解 NDDE 和 NDDE 系统产生了兴趣。关注的是一致性和收敛性分析,并且可以看出该方法可以用具有误差的统一闭式解表示[公式:见正文],其中 n 是神经元的数量。所开发的神经网络方法通过使用四种不同类型的特殊正交多项式在各种类型的示例问题(DDE、NDDE 和 NDDE 系统)上进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f313/9950134/f2eef9fe1fb6/41598_2023_30127_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验