Department of Mathematics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
Sci Rep. 2023 Feb 23;13(1):3164. doi: 10.1038/s41598-023-30127-8.
In this paper, an efficient orthogonal neural network (ONN) approach is introduced to solve the higher-order neutral delay differential equations (NDDEs) with variable coefficients and multiple delays. The method is implemented by replacing the hidden layer of the feed-forward neural network with the orthogonal polynomial-based functional expansion block, and the corresponding weights of the network are obtained using an extreme learning machine(ELM) approach. Starting with simple delay differential equations (DDEs), an interest has been shown in solving NDDEs and system of NDDEs. Interest is given to consistency and convergence analysis, and it is seen that the method can produce a uniform closed-form solution with an error of order [Formula: see text], where n is the number of neurons. The developed neural network method is validated over various types of example problems(DDEs, NDDEs, and system of NDDEs) with four different types of special orthogonal polynomials.
本文提出了一种有效的正交神经网络(ONN)方法,用于求解具有变系数和多个时滞的高阶中立型时滞微分方程(NDDE)。该方法通过用基于正交多项式的函数展开块替换前馈神经网络的隐藏层,并使用极限学习机(ELM)方法获得网络的相应权重来实现。从简单的时滞微分方程(DDE)开始,人们对求解 NDDE 和 NDDE 系统产生了兴趣。关注的是一致性和收敛性分析,并且可以看出该方法可以用具有误差的统一闭式解表示[公式:见正文],其中 n 是神经元的数量。所开发的神经网络方法通过使用四种不同类型的特殊正交多项式在各种类型的示例问题(DDE、NDDE 和 NDDE 系统)上进行了验证。