Suppr超能文献

用于诊断帕金森病的基因组学变压器

Genomics transformer for diagnosing Parkinson's disease.

作者信息

Reyes Diego Machado, Kim Mansu, Chao Hanqing, Hahn Juergen, Shen Li, Yan Pingkun

机构信息

Dept. of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.

Dept. of Artificial Intelligence, Catholic University of Korea, Bucheon, Republic of Korea.

出版信息

IEEE EMBS Int Conf Biomed Health Inform. 2022 Sep;2022. doi: 10.1109/bhi56158.2022.9926815. Epub 2022 Nov 4.

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease and presents a complex etiology with genomic and environmental factors and no recognized cures. Genotype data, such as single nucleotide polymorphisms (SNPs), could be used as a prodromal factor for early detection of PD. However, the polygenic nature of PD presents a challenge as the complex relationships between SNPs towards disease development are difficult to model. Traditional assessment methods such as polygenic risk scores and machine learning approaches struggle to capture the complex interactions present in the genotype data, thus limiting their discriminative capabilities in diagnosis. On the other hand, deep learning models are better suited for this task. Nevertheless, they encounter difficulties of their own such as a lack of interpretability. To overcome these limitations, in this work, a novel transformer encoder-based model is introduced to classify PD patients from healthy controls based on their genotype. This method is designed to effectively model complex global feature interactions and enable increased interpretability through the learned attention scores. The proposed framework outperformed traditional machine learning models and multilayer perceptron (MLP) baseline models. Moreover, visualization of the learned SNP-SNP associations provides not only interpretability to the model but also valuable insights into the biochemical pathways underlying PD development, which are corroborated by pathway enrichment analysis. Our results suggest novel SNP interactions to be further studied in wet lab and clinical settings.

摘要

帕金森病(PD)是第二常见的神经退行性疾病,其病因复杂,涉及基因组和环境因素,且尚无公认的治愈方法。基因型数据,如单核苷酸多态性(SNP),可作为PD早期检测的前驱因素。然而,PD的多基因性质带来了挑战,因为SNP与疾病发展之间的复杂关系难以建模。传统的评估方法,如多基因风险评分和机器学习方法,难以捕捉基因型数据中存在的复杂相互作用,从而限制了它们在诊断中的判别能力。另一方面,深度学习模型更适合这项任务。然而,它们也有自身的困难,比如缺乏可解释性。为了克服这些限制,在这项工作中,引入了一种基于新型变压器编码器的模型,根据基因型对PD患者和健康对照进行分类。该方法旨在有效地对复杂的全局特征相互作用进行建模,并通过学习到的注意力分数提高可解释性。所提出的框架优于传统的机器学习模型和多层感知器(MLP)基线模型。此外,对学习到的SNP-SNP关联进行可视化,不仅为模型提供了可解释性,还为PD发展背后的生化途径提供了有价值的见解,通路富集分析证实了这些见解。我们的结果表明,新的SNP相互作用有待在湿实验室和临床环境中进一步研究。

相似文献

1
Genomics transformer for diagnosing Parkinson's disease.
IEEE EMBS Int Conf Biomed Health Inform. 2022 Sep;2022. doi: 10.1109/bhi56158.2022.9926815. Epub 2022 Nov 4.
2
MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson's disease diagnosis.
Comput Biol Med. 2023 Jan;152:106308. doi: 10.1016/j.compbiomed.2022.106308. Epub 2022 Nov 24.
5
Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN.
Comput Biol Med. 2023 Jul;161:107031. doi: 10.1016/j.compbiomed.2023.107031. Epub 2023 May 17.
6
Multimodal Brain Connectomics-Based Prediction of Parkinson's Disease Using Graph Attention Networks.
Front Neurosci. 2022 Feb 23;15:741489. doi: 10.3389/fnins.2021.741489. eCollection 2021.
7
Machine learning approaches to identify Parkinson's disease using voice signal features.
Front Artif Intell. 2023 Mar 28;6:1084001. doi: 10.3389/frai.2023.1084001. eCollection 2023.
9
Deep Learning Framework for Complex Disease Risk Prediction Using Genomic Variations.
Sensors (Basel). 2023 May 1;23(9):4439. doi: 10.3390/s23094439.

引用本文的文献

1
A foundation model for learning genetic associations from brain imaging phenotypes.
Bioinform Adv. 2025 Aug 13;5(1):vbaf196. doi: 10.1093/bioadv/vbaf196. eCollection 2025.
2
A novel integrative multimodal classifier to enhance the diagnosis of Parkinson's disease.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf088.
3
A review of AI-based radiogenomics in neurodegenerative disease.
Front Big Data. 2025 Feb 20;8:1515341. doi: 10.3389/fdata.2025.1515341. eCollection 2025.
4
Leveraging hierarchical structures for genetic block interaction studies using the hierarchical transformer.
medRxiv. 2025 Feb 14:2024.11.18.24317486. doi: 10.1101/2024.11.18.24317486.
5
Language Modeling Screens Parkinson's Disease with Self-reported Questionnaires.
medRxiv. 2024 Sep 24:2024.09.23.24314200. doi: 10.1101/2024.09.23.24314200.
6
Identifying Progression-Specific Alzheimer's Subtypes Using Multimodal Transformer.
J Pers Med. 2024 Apr 15;14(4):421. doi: 10.3390/jpm14040421.
7
Explainable artificial intelligence for omics data: a systematic mapping study.
Brief Bioinform. 2023 Nov 22;25(1). doi: 10.1093/bib/bbad453.

本文引用的文献

1
Multi-modality machine learning predicting Parkinson's disease.
NPJ Parkinsons Dis. 2022 Apr 1;8(1):35. doi: 10.1038/s41531-022-00288-w.
2
Hippo signaling: bridging the gap between cancer and neurodegenerative disorders.
Neural Regen Res. 2021 Apr;16(4):643-652. doi: 10.4103/1673-5374.295273.
3
Brain Imaging Genomics: Integrated Analysis and Machine Learning.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.
4
The Intestinal Barrier in Parkinson's Disease: Current State of Knowledge.
J Parkinsons Dis. 2019;9(s2):S323-S329. doi: 10.3233/JPD-191707.
5
Ageing as a risk factor for neurodegenerative disease.
Nat Rev Neurol. 2019 Oct;15(10):565-581. doi: 10.1038/s41582-019-0244-7. Epub 2019 Sep 9.
6
Gene-by-environment interactions in Alzheimer's disease and Parkinson's disease.
Neurosci Biobehav Rev. 2019 Aug;103:73-80. doi: 10.1016/j.neubiorev.2019.06.018. Epub 2019 Jun 14.
7
Can the gut be the missing piece in uncovering PD pathogenesis?
Parkinsonism Relat Disord. 2019 Feb;59:26-31. doi: 10.1016/j.parkreldis.2018.11.014. Epub 2018 Nov 12.
8
Focal Loss for Dense Object Detection.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.
9
Old Drugs as New Treatments for Neurodegenerative Diseases.
Pharmaceuticals (Basel). 2018 May 11;11(2):44. doi: 10.3390/ph11020044.
10
TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2389-2394. doi: 10.1073/pnas.1616332114. Epub 2017 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验