Suppr超能文献

基于表面等离子体激元显微镜的电生理学对钠-葡萄糖协同转运蛋白1的功能表征:糖结合与转运的动力学

Functional characterization of SGLT1 using SSM-based electrophysiology: Kinetics of sugar binding and translocation.

作者信息

Bazzone Andre, Zerlotti Rocco, Barthmes Maria, Fertig Niels

机构信息

Nanion Technologies GmbH, Munich, Germany.

Department of Structural Biology, Faculty of Biology and Pre-Clinics, Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.

出版信息

Front Physiol. 2023 Feb 7;14:1058583. doi: 10.3389/fphys.2023.1058583. eCollection 2023.

Abstract

Beside the ongoing efforts to determine structural information, detailed functional studies on transporters are essential to entirely understand the underlying transport mechanisms. We recently found that solid supported membrane-based electrophysiology (SSME) enables the measurement of both sugar binding and transport in the Na/sugar cotransporter SGLT1 (Bazzone et al, 2022a). Here, we continued with a detailed kinetic characterization of SGLT1 using SSME, determining K and K for different sugars, k values for sugar-induced conformational transitions and the effects of Na, Li, H and Cl on sugar binding and transport. We found that the sugar-induced pre-steady-state (PSS) charge translocation varies with the bound ion (Na, Li, H or Cl), but not with the sugar species, indicating that the conformational state upon sugar binding depends on the ion. Rate constants for the sugar-induced conformational transitions upon binding to the Na-bound carrier range from 208 s for D-glucose to 95 s for 3-OMG. In the absence of Na, rate constants are decreased, but all sugars bind to the empty carrier. From the steady-state transport current, we found a sequence for sugar specificity (V/K): D-glucose > MDG > D-galactose > 3-OMG > D-xylose. While K differs 160-fold across tested substrates and plays a major role in substrate specificity, V only varies by a factor of 1.9. Interestingly, D-glucose has the lowest V across all tested substrates, indicating a rate limiting step in the sugar translocation pathway following the fast sugar-induced electrogenic conformational transition. SGLT1 specificity for D-glucose is achieved by optimizing two ratios: the sugar affinity of the empty carrier for D-glucose is similarly low as for all tested sugars (K = 210 mM). Affinity for D-glucose increases 14-fold (K = 15 mM) in the presence of sodium as a result of cooperativity. Apparent affinity for D-glucose during transport increases 8-fold (K = 1.9 mM) compared to K due to optimized kinetics. In contrast, K and K values for 3-OMG and D-xylose are of similar magnitude. Based on our findings we propose an 11-state kinetic model, introducing a random binding order and intermediate states corresponding to the electrogenic transitions detected SSME upon substrate binding.

摘要

除了正在进行的确定结构信息的工作外,对转运蛋白进行详细的功能研究对于全面理解潜在的转运机制至关重要。我们最近发现,基于固体支持膜的电生理学(SSME)能够测量钠/糖共转运蛋白SGLT1中的糖结合和转运(Bazzone等人,2022a)。在这里,我们继续使用SSME对SGLT1进行详细的动力学表征,确定不同糖类的K和K 、糖诱导的构象转变的k值以及Na、Li、H和Cl对糖结合和转运的影响。我们发现,糖诱导的预稳态(PSS)电荷转运随结合的离子(Na、Li、H或Cl)而变化,但不随糖类而变化,这表明糖结合时的构象状态取决于离子。糖与结合了Na的载体结合后诱导构象转变的速率常数范围从D-葡萄糖的208 s到3-OMG的95 s。在没有Na的情况下,速率常数降低,但所有糖类都能与空载体结合。从稳态转运电流中,我们发现了糖特异性(V/K)的顺序:D-葡萄糖>甲基葡萄糖>D-半乳糖>3-OMG>D-木糖。虽然K在所有测试底物中相差160倍,并且在底物特异性中起主要作用,但V仅相差1.9倍。有趣的是,D-葡萄糖在所有测试底物中的V最低,这表明在快速的糖诱导的电生性构象转变之后,糖转运途径中存在限速步骤。SGLT1对D-葡萄糖的特异性是通过优化两个比率来实现的:空载体对D-葡萄糖的糖亲和力与所有测试糖类的亲和力相似较低(K = 210 mM)。由于协同作用,在存在钠的情况下,对D-葡萄糖的亲和力增加14倍(K = 15 mM)。与K 相比,转运过程中对D-葡萄糖的表观亲和力增加8倍(K = 1.9 mM),这是由于动力学优化。相比之下,3-OMG和D-木糖的K和K 值大小相似。基于我们的发现,我们提出了一个11状态的动力学模型,引入了随机结合顺序和与底物结合时SSME检测到的电生性转变相对应的中间状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baae/9941201/07b2b8550fb4/fphys-14-1058583-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验