Suppr超能文献

营养物质摄取的机理模型解释了海洋贫营养菌和富营养菌之间的二分法。

Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, United States of America.

Department of Biological Sciences, University of Southern California, Los Angeles, United States of America.

出版信息

PLoS Comput Biol. 2021 May 19;17(5):e1009023. doi: 10.1371/journal.pcbi.1009023. eCollection 2021 May.

Abstract

Marine bacterial diversity is immense and believed to be driven in part by trade-offs in metabolic strategies. Here we consider heterotrophs that rely on organic carbon as an energy source and present a molecular-level model of cell metabolism that explains the dichotomy between copiotrophs-which dominate in carbon-rich environments-and oligotrophs-which dominate in carbon-poor environments-as the consequence of trade-offs between nutrient transport systems. While prototypical copiotrophs, like Vibrios, possess numerous phosphotransferase systems (PTS), prototypical oligotrophs, such as SAR11, lack PTS and rely on ATP-binding cassette (ABC) transporters, which use binding proteins. We develop models of both transport systems and use them in proteome allocation problems to predict the optimal nutrient uptake and metabolic strategy as a function of carbon availability. We derive a Michaelis-Menten approximation of ABC transport, analytically demonstrating how the half-saturation concentration is a function of binding protein abundance. We predict that oligotrophs can attain nanomolar half-saturation concentrations using binding proteins with only micromolar dissociation constants and while closely matching transport and metabolic capacities. However, our model predicts that this requires large periplasms and that the slow diffusion of the binding proteins limits uptake. Thus, binding proteins are critical for oligotrophic survival yet severely constrain growth rates. We propose that this trade-off fundamentally shaped the divergent evolution of oligotrophs and copiotrophs.

摘要

海洋细菌多样性巨大,其部分驱动力被认为来自于代谢策略的权衡。在这里,我们考虑依赖有机碳作为能量来源的异养生物,并提出了一个细胞代谢的分子水平模型,该模型解释了在富碳环境中占主导地位的“同养型生物”和在贫碳环境中占主导地位的“寡养型生物”之间的二分法,是养分运输系统之间权衡的结果。虽然典型的同养生物,如弧菌,拥有许多磷酸转移酶系统(PTS),但典型的寡养生物,如 SAR11,缺乏 PTS,依赖于 ATP 结合盒(ABC)转运蛋白,这些蛋白使用结合蛋白。我们建立了这两种运输系统的模型,并将它们用于蛋白质组分配问题中,以预测在碳源可用性的影响下最佳的养分摄取和代谢策略。我们推导出了 ABC 转运的米氏近似值,从理论上证明了半饱和浓度如何是结合蛋白丰度的函数。我们预测,寡养生物可以使用解离常数仅为微摩尔的结合蛋白达到纳摩尔级的半饱和浓度,同时紧密匹配运输和代谢能力。然而,我们的模型预测,这需要较大的周质空间,并且结合蛋白的缓慢扩散限制了摄取。因此,结合蛋白对寡养生物的生存至关重要,但严重限制了生长速度。我们提出,这种权衡从根本上塑造了寡养生物和同养生物的分歧进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d05/8168909/b4cda57119a8/pcbi.1009023.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验