文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BotanicX-AI:使用解释驱动的深度学习模型识别番茄叶部病害

BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model.

作者信息

Bhandari Mohan, Shahi Tej Bahadur, Neupane Arjun, Walsh Kerry Brian

机构信息

Department of Science and Technology, Samriddhi College, Bhaktapur 44800, Nepal.

School of Engineering and Technology, Central Queensland University, Norman Gardens, Rockhampton 4701, Australia.

出版信息

J Imaging. 2023 Feb 20;9(2):53. doi: 10.3390/jimaging9020053.


DOI:10.3390/jimaging9020053
PMID:36826972
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9964407/
Abstract

Early and accurate tomato disease detection using easily available leaf photos is essential for farmers and stakeholders as it help reduce yield loss due to possible disease epidemics. This paper aims to visually identify nine different infectious diseases (bacterial spot, early blight, Septoria leaf spot, late blight, leaf mold, two-spotted spider mite, mosaic virus, target spot, and yellow leaf curl virus) in tomato leaves in addition to healthy leaves. We implemented EfficientNetB5 with a tomato leaf disease (TLD) dataset without any segmentation, and the model achieved an average training accuracy of 99.84% ± 0.10%, average validation accuracy of 98.28% ± 0.20%, and average test accuracy of 99.07% ± 0.38% over 10 cross folds.The use of gradient-weighted class activation mapping (GradCAM) and local interpretable model-agnostic explanations are proposed to provide model interpretability, which is essential to predictive performance, helpful in building trust, and required for integration into agricultural practice.

摘要

利用易于获取的叶片照片对番茄病害进行早期准确检测,对农民和利益相关者至关重要,因为这有助于减少可能因病害流行造成的产量损失。本文旨在从视觉上识别番茄叶片中的九种不同传染病(细菌性斑点病、早疫病、叶斑病、晚疫病、叶霉病、二斑叶螨、花叶病毒、靶斑病和黄叶卷曲病毒)以及健康叶片。我们使用番茄叶病(TLD)数据集实现了EfficientNetB5,且未进行任何分割,该模型在10次交叉折叠中平均训练准确率达到99.84%±0.10%,平均验证准确率达到98.28%±0.20%,平均测试准确率达到99.07%±0.38%。我们还提出使用梯度加权类激活映射(GradCAM)和局部可解释模型无关解释来提供模型可解释性,这对预测性能至关重要,有助于建立信任,并且是融入农业实践所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/03e4f95a3b5a/jimaging-09-00053-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/bbb2ff6118a7/jimaging-09-00053-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/e6ebaca3fd03/jimaging-09-00053-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/890ef238191c/jimaging-09-00053-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/64605ee0e4b0/jimaging-09-00053-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/03e4f95a3b5a/jimaging-09-00053-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/bbb2ff6118a7/jimaging-09-00053-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/e6ebaca3fd03/jimaging-09-00053-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/890ef238191c/jimaging-09-00053-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/64605ee0e4b0/jimaging-09-00053-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/9964407/03e4f95a3b5a/jimaging-09-00053-g005.jpg

相似文献

[1]
BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model.

J Imaging. 2023-2-20

[2]
A Smartphone-Based Detection System for Tomato Leaf Disease Using EfficientNetV2B2 and Its Explainability with Artificial Intelligence (AI).

Sensors (Basel). 2023-10-24

[3]
Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model.

Plant Methods. 2020-6-8

[4]
Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization.

Front Plant Sci. 2024-5-17

[5]
Tomato Leaf Disease Recognition on Leaf Images Based on Fine-Tuned Residual Neural Networks.

Plants (Basel). 2022-10-31

[6]
Explainable deep learning model for automatic mulberry leaf disease classification.

Front Plant Sci. 2023-9-19

[7]
An effective approach for plant leaf diseases classification based on a novel DeepPlantNet deep learning model.

Front Plant Sci. 2023-10-11

[8]
Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI.

Sci Rep. 2024-7-6

[9]
Early and late blight disease identification in tomato plants using a neural network-based model to augmenting agricultural productivity.

Sci Prog. 2024

[10]
Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex.

Arch Virol. 2006-12

引用本文的文献

[1]
Evaluation of deep learning models using explainable AI with qualitative and quantitative analysis for rice leaf disease detection.

Sci Rep. 2025-8-29

[2]
XSE-TomatoNet: An explainable AI based tomato leaf disease classification method using EfficientNetB0 with squeeze-and-excitation blocks and multi-scale feature fusion.

MethodsX. 2025-1-6

[3]
Principal component analysis and fine-tuned vision transformation integrating model explainability for breast cancer prediction.

Vis Comput Ind Biomed Art. 2025-3-10

[4]
Classification of tomato leaf disease using Transductive Long Short-Term Memory with an attention mechanism.

Front Plant Sci. 2025-1-21

[5]
Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation.

Front Plant Sci. 2024-11-21

[6]
Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization.

Front Plant Sci. 2024-5-17

本文引用的文献

[1]
Auguring Fake Face Images Using Dual Input Convolution Neural Network.

J Imaging. 2022-12-21

[2]
Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI.

Comput Biol Med. 2022-11

[3]
Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches.

J Med Syst. 2022-10-6

[4]
Tomato Pest Recognition Algorithm Based on Improved YOLOv4.

Front Plant Sci. 2022-7-13

[5]
Explainable artificial intelligence (XAI) in deep learning-based medical image analysis.

Med Image Anal. 2022-7

[6]
A Deep Learning-Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes.

Front Genet. 2022-3-28

[7]
Deep learning techniques to classify agricultural crops through UAV imagery: a review.

Neural Comput Appl. 2022

[8]
Fruit classification using attention-based MobileNetV2 for industrial applications.

PLoS One. 2022

[9]
Recognition of Leaf Disease Using Hybrid Convolutional Neural Network by Applying Feature Reduction.

Sensors (Basel). 2022-1-12

[10]
Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network.

Sensors (Basel). 2021-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索