Suppr超能文献

利用基于神经网络的模型对番茄植株的早疫病和晚疫病进行早期识别,以提高农业生产力。

Early and late blight disease identification in tomato plants using a neural network-based model to augmenting agricultural productivity.

机构信息

Department of Computer & Software Technology, University of Swat, KP, Pakistan.

Department of Computer Science, City University of Science and Information Technology, KP, Pakistan.

出版信息

Sci Prog. 2024 Jul-Sep;107(3):368504241275371. doi: 10.1177/00368504241275371.

Abstract

Computer-advanced technologies have a significant impact across various fields. It is widely recognized that diseases have a detrimental effect on crop productivity and can significantly impact the economy, particularly in agricultural countries. Tomatoes hold great economic importance among cash crops, second only to potatoes. Globally, tomato production reaches a staggering 160 million tons annually, making it even more crucial for agricultural development. Unfortunately, the tomato crop is susceptible to several diseases, with early blight and late blight as two prominent culprits responsible for a production decrease of around 79%. Traditional disease detection and identification methods are time-consuming, expensive, and destructive, often requiring pathologists' expertise. Thus, the primary research objective is to enhance disease identification accuracy by leveraging deep learning techniques. A model based on the inception-V3 architecture has been devised to classify diseases affecting tomato plant leaves. The model was trained and tested using the PlantVillage dataset, which comprises 6000 sample images of tomato leaves. The training and testing process utilized an 80 : 20 ratio, resulting in an impressive classification accuracy of 97.44% for the proposed model. The proposed solution aims to enable the tomato industry to thrive in the global market by mitigating the impact of tomato leaf diseases. By reducing the prevalence of these diseases, the solution can increase demand and contribute to the industry's growth.

摘要

计算机先进技术在各个领域都有着重大的影响。人们普遍认识到,疾病对作物的生产力有不利影响,特别是在农业国家,会对经济产生重大影响。番茄是经济作物中的重要品种,其经济重要性仅次于土豆。全球每年番茄产量高达 1.6 亿吨,因此番茄生产对农业发展至关重要。不幸的是,番茄作物容易受到多种疾病的影响,早疫病和晚疫病是两个主要的病原体,它们导致的减产约为 79%。传统的疾病检测和识别方法既耗时又昂贵,而且具有破坏性,通常需要病理学家的专业知识。因此,主要的研究目标是利用深度学习技术提高疾病识别的准确性。设计了一个基于 inception-V3 架构的模型来对影响番茄植物叶片的疾病进行分类。该模型使用 PlantVillage 数据集进行训练和测试,该数据集包含 6000 张番茄叶片样本图像。训练和测试过程采用 80:20 的比例,该模型的分类准确性达到了令人印象深刻的 97.44%。该解决方案旨在通过减轻番茄叶疾病的影响,使番茄产业在全球市场中蓬勃发展。通过减少这些疾病的流行,该解决方案可以增加需求,为行业的增长做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e30f/11401150/b114ea67f267/10.1177_00368504241275371-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验