Paul Nisarga, Zhang Yang, Fu Liang
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Sci Adv. 2023 Feb 24;9(8):eabn1401. doi: 10.1126/sciadv.abn1401.
van der Waals (vdW) heterostructures formed by two-dimensional (2D) magnets and semiconductors have provided a fertile ground for fundamental science and spintronics. We present first-principles calculations finding a proximity exchange splitting of 14 meV (equivalent to an effective Zeeman field of 120 T) in the vdW magnet-semiconductor heterostructure MoS /CrBr , leading to a 2D spin-polarized half-metal with carrier densities ranging up to 10 cm. We consequently explore the effect of large exchange coupling on the electronic band structure when the magnetic layer hosts chiral spin textures such as skyrmions. A flat Chern band is found at a "magic" value of magnetization [Formula: see text] for Schrödinger electrons, and it generally occurs for Dirac electrons. The magnetic proximity-induced anomalous Hall effect enables transport-based detection of chiral spin textures, and flat Chern bands provide an avenue for engineering various strongly correlated states.
由二维(2D)磁体和半导体形成的范德华(vdW)异质结构为基础科学和自旋电子学提供了一片沃土。我们通过第一性原理计算发现,在vdW磁体 - 半导体异质结构MoS₂/CrBr₃中存在14毫电子伏特的近邻交换分裂(相当于120特斯拉的有效塞曼场),从而产生了一种二维自旋极化半金属,其载流子密度高达10¹³厘米⁻²。因此,当磁性层呈现手性自旋纹理(如斯格明子)时,我们探究了大交换耦合对电子能带结构的影响。对于薛定谔电子,在磁化强度的一个“神奇”值[公式:见正文]处发现了一个平坦的陈带,并且它通常也出现在狄拉克电子的情况中。磁近邻诱导的反常霍尔效应使得能够基于输运检测手性自旋纹理,而平坦的陈带为设计各种强关联态提供了一条途径。