Chakraborty Shamik, Ravikumar Abhilash
Nanoelectronics Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru, 560035 India.
Sci Rep. 2021 Jan 8;11(1):198. doi: 10.1038/s41598-020-80290-5.
We perform first principle density functional theory calculations to predict the substrate induced electronic phase transitions of CrI[Formula: see text] based 2-D heterostructures. We adsorb graphene and MoS[Formula: see text] on novel 2-D ferromagnetic semiconductor-CrI[Formula: see text] and investigate the electronic and magnetic properties of these heterostructures with and without spin orbit coupling (SOC). We find that when strained MoS[Formula: see text] is adsorbed on CrI[Formula: see text], the spin dependent band gap which is a characteristic of CrI[Formula: see text], ceases to remain. The bandgap of the heterostructure reduces drastically ([Formula: see text] 70%) and the heterostructure shows an indirect, spin-independent bandgap of [Formula: see text] 0.5 eV. The heterostructure remains magnetic (with and without SOC) with the magnetic moment localized primarily on CrI[Formula: see text]. Adsorption of graphene on CrI[Formula: see text] induces an electronic phase transition of the subsequent heterostructure to a ferromagnetic metal in both the spin configurations with magnetic moment localized on CrI[Formula: see text]. The SOC induced interaction opens a bandgap of [Formula: see text] 30 meV in the Dirac cone of graphene, which allows us to visualize Chern insulating states without reducing van der Waals gap.
我们进行第一性原理密度泛函理论计算,以预测基于CrI₃的二维异质结构的衬底诱导电子相变。我们将石墨烯和MoS₂吸附在新型二维铁磁半导体CrI₃上,并研究这些有自旋轨道耦合(SOC)和没有自旋轨道耦合的异质结构的电子和磁性特性。我们发现,当应变的MoS₂吸附在CrI₃上时,作为CrI₃特征的自旋相关带隙不再存在。异质结构的带隙急剧减小(约70%),并且异质结构显示出约0.5 eV的间接、自旋无关带隙。该异质结构在有和没有SOC的情况下都保持磁性,磁矩主要定域在CrI₃上。在两种自旋构型中,石墨烯吸附在CrI₃上都会使随后的异质结构发生电子相变,成为铁磁金属,磁矩定域在CrI₃上。SOC诱导的相互作用在石墨烯的狄拉克锥中打开了约30 meV的带隙,这使我们能够在不减小范德华间隙的情况下可视化陈绝缘态。