Department of Physics, University of Washington, Seattle, WA 98195, USA.
Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA.
Sci Adv. 2017 May 31;3(5):e1603113. doi: 10.1126/sciadv.1603113. eCollection 2017 May.
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI and a monolayer of WSe. We observe unprecedented control of the spin and valley pseudospin in WSe, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe valley splitting and polarization via flipping of the CrI magnetization. The WSe photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe and the CrI magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
磁性材料与半导体的结合,无论是在基础科学领域还是在无缝信息处理和存储集成的实际应用中,都具有重要意义。我们构建了由超薄铁磁半导体 CrI 和单层 WSe 组成的范德华异质结。我们观察到了 WSe 中前所未有的自旋和谷赝自旋的控制,其中我们检测到了近 13 T 的大磁交换场,并通过翻转 CrI 磁化来实现 WSe 谷劈裂和极化的快速切换。WSe 的光致发光强度强烈依赖于 WSe 中光激发自旋与 CrI 磁化之间的相对排列,这是由于在异质结构界面上超快的自旋相关电荷跃迁。谷赝自旋的光致发光检测为探测超薄磁体中有趣的畴动力学以及异质结构内丰富的自旋相互作用提供了一种简单而灵敏的方法。