Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon, 34113, Republic of Korea.
Korea Chemical Bank, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
Biosens Bioelectron. 2023 May 1;227:115169. doi: 10.1016/j.bios.2023.115169. Epub 2023 Feb 19.
The COVID-19 pandemic is an ongoing global public health threat. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and binding of the SARS-CoV-2 spike to its receptor, angiotensin-converting enzyme 2 (ACE2), on host cells is critical for viral infection. Here, we developed a luminescent biosensor that readily detects interactions of the spike receptor-binding domain (RBD) and ACE2 in cell culture medium ('SpACE-CCM'), which was based on bimolecular complementation of the split nanoluciferase-fused spike RBD and ectodomain of ACE2 and further engineered to be efficiently secreted from cells by adding a heterologous secretory signal peptide (SSP). Screening of various SSPs identified 'interferon-α+alanine-aspartate' as the SSP that induced the highest activity. The SpACE-CCM biosensor was validated by observing a marked reduction of the activity caused by interaction-defective mutations or in the presence of neutralizing antibodies, recombinant decoy proteins, or peptides. Importantly, the SpACE-CCM biosensor responded well in assay-validating conditions compared with conventional cell lysate-based NanoLuc Binary Technology, indicating its advantage. We further demonstrated the biosensor's versatility by quantitatively detecting neutralizing activity in blood samples from COVID-19 patients and vaccinated individuals, discovering a small molecule interfering with the spike RBD-ACE2 interaction through high-throughput screening, and assessing the cross-reactivity of neutralizing antibodies against SARS-CoV-2 variants. Because the SpACE-CCM is a facile and rapid one-step reaction biosensor that aptly recapitulates the native spike-ACE2 interaction, it would be advantageous in many experimental and clinical applications associated with this interaction.
新型冠状病毒肺炎疫情是一场持续的全球公共卫生威胁。新型冠状病毒肺炎是由严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)感染引起的,SARS-CoV-2 的刺突与宿主细胞上的血管紧张素转换酶 2(ACE2)结合对于病毒感染至关重要。在这里,我们开发了一种发光生物传感器,该传感器可轻松检测细胞培养物中刺突受体结合域(RBD)和 ACE2 的相互作用(“SpACE-CCM”),该传感器基于分裂纳米荧光素酶融合的刺突 RBD 和 ACE2 的外域的双分子互补,并通过添加异源分泌信号肽(SSP)进一步工程设计,以有效地从细胞中分泌出来。筛选各种 SSP 后,确定“干扰素-α+丙氨酸-天冬氨酸”为诱导活性最高的 SSP。通过观察到相互作用缺陷突变或存在中和抗体、重组诱饵蛋白或肽时活性明显降低,验证了 SpACE-CCM 生物传感器的有效性。重要的是,与传统的基于细胞裂解物的 NanoLuc Binary Technology 相比,SpACE-CCM 生物传感器在经过验证的测定条件下反应良好,表明其具有优势。我们还通过定量检测来自新型冠状病毒肺炎患者和接种个体的血液样本中的中和活性、通过高通量筛选发现干扰刺突 RBD-ACE2 相互作用的小分子、评估针对 SARS-CoV-2 变体的中和抗体的交叉反应性,进一步证明了该生物传感器的多功能性。由于 SpACE-CCM 是一种简单快速的一步反应生物传感器,恰当地重现了天然刺突-ACE2 相互作用,因此它在许多与这种相互作用相关的实验和临床应用中具有优势。