School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China.
School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China.
Sci Total Environ. 2023 May 15;873:162378. doi: 10.1016/j.scitotenv.2023.162378. Epub 2023 Feb 23.
Precipitation data with high accuracy and spatial resolution characteristics play significant roles in the regional hydrological and eco-environmental system applications. Thus, satellite-based precipitation products (SPPs) with high spatial resolution and high accuracy must be developed. This study proposed a multiple-step scheme to improve the global precipitation measurement (GPM) at daily and monthly timescales over the Tibetan Plateau (TP) from 2014 to 2017. First, combined with the geographically weighted regression (GWR) method using geographic and topographic factors, the gamma-distribution mapping and local intensity scaling (GDM-LOCI) method is applied to effectively merge the observed data attributes and the spatial representation of SPPs at the daily scale by correcting precipitation volumes and frequencies. Second, the areal merged precipitation, normalized difference vegetation index (NDVI), and reanalyzed atmospheric data are used to improve the spatial resolution of monthly GPM with a random forest (RF) model that uses the 17 land cover types to establish the local downscaling model windows. The results show that daily merged precipitation can better reflect the spatial and temporal variability of precipitation than can satellite estimates, and the correlation coefficient (R), and critical success index (CSI) increased by 0.12 and 0.26, respectively. In the merged downscaling model, the merged precipitation factor can weaken the negative effect of the other auxiliary predictors due to its spatial autocorrelation in precipitation estimation. Most importantly, by using the land cover types to establish local model windows for the downscaling model, not only the spatial resolution of the GPM product is downscaled to 1 km, but also the spatial structure of the downscaled products is enhanced, with less deviation and a higher spatial correlation. The R, the root mean square error (RMSE) and the relative bias (BIAS) were 0.89, 50.19 mm and 0.57, respectively. This study presents a promising scheme for generating high-quality precipitation data for regional hydrometeorological research in data-scarce regions.
具有高精度和高空间分辨率特征的降水数据在区域水文和生态环境系统应用中起着重要作用。因此,必须开发具有高空间分辨率和高精度的卫星降水产品(SPP)。本研究提出了一种多步骤方案,以提高 2014 年至 2017 年青藏高原(TP)逐日和逐月时间尺度上的全球降水测量(GPM)的精度。首先,结合使用地理和地形因素的地理加权回归(GWR)方法,应用伽马分布映射和局部强度缩放(GDM-LOCI)方法,通过校正降水体积和频率,有效地合并观测数据属性和 SPP 的空间表示。其次,利用面积合并降水、归一化差异植被指数(NDVI)和再分析大气数据,使用随机森林(RF)模型提高 GPM 的空间分辨率,该模型使用 17 种土地覆盖类型建立局部降尺度模型窗口。结果表明,逐日合并降水可以比卫星估计更好地反映降水的时空变化,相关系数(R)和关键成功指数(CSI)分别增加了 0.12 和 0.26。在合并降尺度模型中,由于降水估计中的空间自相关,合并降水因子可以减弱其他辅助预测因子的负面影响。最重要的是,通过使用土地覆盖类型为降尺度模型建立局部模型窗口,不仅可以将 GPM 产品的空间分辨率降尺度到 1km,而且可以增强降尺度产品的空间结构,减少偏差和提高空间相关性。R、均方根误差(RMSE)和相对偏差(BIAS)分别为 0.89、50.19mm 和 0.57。本研究提出了一种有前途的方案,可为数据稀缺地区的区域水文气象研究生成高质量的降水数据。