Sun Tao, Yan Nana, Zhu Weiwei, Zhuang Qifeng
College of Geomatics Science and Technology, Nanjing Tech University, Nanjing, 211816, China.
Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences. Beijing 100101, China.
Heliyon. 2024 Aug 22;10(17):e36368. doi: 10.1016/j.heliyon.2024.e36368. eCollection 2024 Sep 15.
Hydro-meteorological monitoring through satellites in arid and semi-arid regions is constrained by the coarse spatial resolution of precipitation data, which impedes detailed analyses. The objective of this study is to evaluate various machine learning techniques for developing a downscaling framework that generates high spatio-temporal resolution precipitation products. Focusing on the Hai River Basin, we evaluated three machine learning approaches-Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Back Propagation (BP) neural networks. These methods integrate environmental variables including land surface temperature (LST), Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), Precipitable Water Vapor (PWV), and albedo, to downscale the 0.1° spatial resolution Global Precipitation Measurement (GPM) product to a 1 km resolution. We further refined the results with residual correction and calibration using terrestrial rain gauge data. Subsequently, utilizing the 1 km annual precipitation, we employed the moving average window method to derive monthly and daily precipitation. The results demonstrated that the XGBoost method, calibrated with Geographical Difference Analysis (GDA) and Kriging spatial interpolation, proved to be the most accurate, achieving a Mean Absolute Error (MAE) of 58.40 mm for the annual product, representing a 14 % improvement over the original data. The monthly and daily products achieved MAE values of 11.61 mm and 1.79 mm, respectively, thus enhancing spatial resolution while maintaining accuracy comparable to the original product. In the Hai River Basin, key factors including longitude, latitude, DEM, LST_night, and PWV demonstrated greater importance and stability than other factors, thereby enhancing the model's precipitation prediction capabilities. This study provides a comprehensive assessment of the annual, monthly, and daily high-temporal and high-spatial resolution downscaling processes of precipitation, serving as an important reference for hydrology and related fields.
干旱和半干旱地区通过卫星进行的水文气象监测受到降水数据粗空间分辨率的限制,这阻碍了详细分析。本研究的目的是评估各种机器学习技术,以开发一个降尺度框架,生成高时空分辨率的降水产品。以海河流域为重点,我们评估了三种机器学习方法——极端梯度提升(XGBoost)、随机森林(RF)和反向传播(BP)神经网络。这些方法整合了包括地表温度(LST)、归一化植被指数(NDVI)、数字高程模型(DEM)、可降水量水汽(PWV)和反照率在内的环境变量,将0.1°空间分辨率的全球降水测量(GPM)产品降尺度到1公里分辨率。我们使用地面雨量计数据通过残差校正和校准进一步细化结果。随后,利用1公里的年降水量,我们采用移动平均窗口法得出月降水量和日降水量。结果表明,经地理差异分析(GDA)和克里金空间插值校准的XGBoost方法最为准确,年产品的平均绝对误差(MAE)为58.40毫米,比原始数据提高了14%。月产品和日产品的MAE值分别为11.61毫米和1.79毫米,在提高空间分辨率的同时保持了与原始产品相当的精度。在海河流域,经度、纬度、DEM、夜间LST和PWV等关键因素比其他因素表现出更大的重要性和稳定性,从而提高了模型的降水预测能力。本研究对降水的年、月和日高时空分辨率降尺度过程进行了全面评估,为水文及相关领域提供了重要参考。