Suppr超能文献

基于人工神经网络方法的产时剖宫产预测模型的建立与验证:一项前瞻性巢式病例对照研究方案。

Development and validation of a prediction model for intrapartum cesarean delivery based on the artificial neural networks approach: a protocol for a prospective nested case-control study.

机构信息

Department of Nursing, West China Second University, Sichuan University, Chengdu, People's Republic of China.

Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China.

出版信息

BMJ Open. 2023 Feb 24;13(2):e066753. doi: 10.1136/bmjopen-2022-066753.

Abstract

INTRODUCTION

Although intrapartum caesarean delivery can resolve dystocia, it would still lead to several adverse outcomes for mothers and children. The obstetric care professionals need effective tools that can help them to identify the possibility and risk factors of intrapartum caesarean delivery, and further implement interventions to avoid unnecessary caesarean birth. This study aims to develop a prediction model for intrapartum caesarean delivery with real-life data based on the artificial neural networks approach.

METHODS AND ANALYSIS

This study is a prospective nested case-control design. Pregnant women who plan to deliver vaginally will be recruited in a tertiary hospital in Southwest China from March 2022 to March 2024. The clinical data of prelabour, intrapartum period and psychosocial information will be collected. The case group will be the women who finally have a baby with intrapartum caesarean deliveries, and the control group will be those who deliver a baby vaginally. An artificial neural networks approach with the backpropagation algorithm multilayer perceptron topology will be performed to construct the prediction model.

ETHICS AND DISSEMINATION

Ethical approval for data collection was granted by the Ethics Committee of West China Second University Hospital, Sichuan University, and the ethical number is 2021 (204). Written informed consent will be obtained from all participants and they can withdraw from the study at any time. The results of this study will be published in peer-review journal.

摘要

引言

虽然产时剖宫产可以解决难产,但仍会给母婴带来一些不良后果。产科医护人员需要有效的工具来帮助他们识别产时剖宫产的可能性和风险因素,并进一步实施干预措施以避免不必要的剖宫产。本研究旨在基于人工神经网络方法,利用真实数据建立产时剖宫产的预测模型。

方法和分析

本研究是一项前瞻性嵌套病例对照设计。计划阴道分娩的孕妇将于 2022 年 3 月至 2024 年 3 月在我国西南地区的一家三级医院招募。将收集产前、产时和社会心理信息的临床数据。病例组将是最终行产时剖宫产分娩的妇女,对照组将是经阴道分娩的妇女。将采用具有反向传播算法多层感知器拓扑结构的人工神经网络方法来构建预测模型。

伦理和传播

本研究的数据收集已获得四川大学华西第二医院伦理委员会的批准,伦理编号为 2021(204)。将获得所有参与者的书面知情同意书,他们可以随时退出研究。本研究的结果将发表在同行评议的期刊上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32f/9972428/0eb3efca0d64/bmjopen-2022-066753f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验