School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia.
Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
Cells. 2023 Feb 10;12(4):579. doi: 10.3390/cells12040579.
Osteoarthritis (OA) remains a prevalent disease affecting more than 20% of the global population, resulting in morbidity and lower quality of life for patients. The study of OA pathophysiology remains predominantly in animal models due to the complexities of mimicking the physiological environment surrounding the joint tissue. Recent development in microfluidic organ-on-chip (OoC) systems have demonstrated various techniques to mimic and modulate tissue physiological environments. Adaptations of these techniques have demonstrated success in capturing a joint tissue's tissue physiology for studying the mechanism of OA. Adapting these techniques and strategies can help create human-specific in vitro models that recapitulate the cellular processes involved in OA. This review aims to comprehensively summarise various demonstrations of microfluidic platforms in mimicking joint microenvironments for future platform design iterations.
骨关节炎(OA)仍然是一种普遍存在的疾病,影响着全球超过 20%的人口,导致患者发病率和生活质量下降。由于关节组织周围生理环境的复杂性,OA 病理生理学的研究主要仍集中在动物模型上。微流控器官芯片(OoC)系统的最新发展已经展示了各种模拟和调节组织生理环境的技术。这些技术的改进成功地捕捉了关节组织的组织生理学,用于研究 OA 的发病机制。适应这些技术和策略可以帮助创建人类特异性的体外模型,重现 OA 中涉及的细胞过程。本综述旨在全面总结微流控平台在模拟关节微环境方面的各种应用,为未来的平台设计迭代提供参考。