Peitso Valtteri, Sarmadian Zahra, Henriques João, Lauwers Elsa, Paggi Carlo Alberto, Mobasheri Ali
Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
chrn on-chip biotechnologies B.V. (aka chiron), Maastricht, The Netherlands.
Curr Protoc. 2024 Dec;4(12):e70079. doi: 10.1002/cpz1.70079.
Osteoarthritis (OA) is one of the most prevalent joint diseases globally, characterized by the progressive breakdown of articular cartilage, resulting in chronic pain, stiffness, and loss of joint function. Despite its significant socioeconomic impact, therapeutic options remain limited, largely due to an incomplete understanding of the molecular mechanisms driving cartilage degradation and OA pathogenesis. Recent advances in in vitro modeling have revolutionized joint tissue research, transitioning from simplistic two-dimensional cell cultures to sophisticated three-dimensional (3D) constructs that more accurately mimic the physiological microenvironment of native cartilage. Over the last decade, organ-on-chip technologies have emerged as transformative tools in tissue engineering, offering microphysiological platforms with precise control over biomechanical and biochemical stimuli. These platforms are providing novel insights into tissue responses and disease progression and are increasingly integrated into the early stages of drug screening and development. In this article, we present a detailed experimental protocol for constructing a cartilage-on-chip system capable of delivering controlled dynamic biomechanical stimulation to 3D-encapsulated chondrocytes in an agarose hydrogel matrix. Our protocol, optimized for both bovine and human chondrocytes, begins with Basic Protocol 1, detailing the preparation and injection of cell-laden hydrogels into the microdevice. Basic Protocol 2 describes the application of dynamic mechanical loading using a calibrated pressurized pump. Finally, Basic Protocols 3 and 4 focus on the retrieval of the hydrogel and RNA extraction for downstream molecular analyses. This platform represents a critical advancement for in vitro studies of cartilage biology, enabling more precise modeling of OA pathophysiology and evaluation of experimental therapeutics. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cartilage-on-chip injection Basic Protocol 2: Cartilage-on-chip actuation Basic Protocol 3: Cartilage-on-chip agarose hydrogel removal Basic Protocol 4: Preparation of cartilage-on-chip for RNA extraction.
骨关节炎(OA)是全球最常见的关节疾病之一,其特征是关节软骨进行性破坏,导致慢性疼痛、僵硬和关节功能丧失。尽管其具有重大的社会经济影响,但治疗选择仍然有限,这主要是由于对驱动软骨降解和OA发病机制的分子机制了解不全面。体外建模的最新进展彻底改变了关节组织研究,从简单的二维细胞培养过渡到更精确模拟天然软骨生理微环境的复杂三维(3D)构建体。在过去十年中,芯片器官技术已成为组织工程中的变革性工具,提供了对生物力学和生化刺激具有精确控制的微生理平台。这些平台正在为组织反应和疾病进展提供新的见解,并越来越多地融入药物筛选和开发的早期阶段。在本文中,我们展示了一个详细的实验方案,用于构建一个芯片软骨系统,该系统能够对琼脂糖水凝胶基质中3D封装的软骨细胞进行可控的动态生物力学刺激。我们针对牛和人软骨细胞进行了优化的方案,从基本方案1开始,详细介绍了将载有细胞的水凝胶制备并注入微装置的过程。基本方案2描述了使用校准的加压泵施加动态机械负荷。最后,基本方案3和4专注于水凝胶的回收和RNA提取,用于下游分子分析。该平台代表了软骨生物学体外研究的一项关键进展,能够更精确地模拟OA病理生理学并评估实验性治疗方法。© 2024作者。由Wiley Periodicals LLC出版的《当前方案》。基本方案1:芯片软骨注射 基本方案2:芯片软骨驱动 基本方案3:芯片软骨琼脂糖水凝胶去除 基本方案4:用于RNA提取的芯片软骨制备。