文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

构建个体化 3D 打印股动脉假性动脉瘤模型用于血管内治疗培训的准确性和可行性。

Accuracy and feasibility in building a personalized 3D printed femoral pseudoaneurysm model for endovascular training.

机构信息

Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan.

Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.

出版信息

PLoS One. 2024 Jun 3;19(6):e0304506. doi: 10.1371/journal.pone.0304506. eCollection 2024.


DOI:10.1371/journal.pone.0304506
PMID:38829913
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11146720/
Abstract

BACKGROUND: The use of three-dimensional(3D) printing is broadly across many medical specialties. It is an innovative, and rapidly growing technology to produce custom anatomical models and medical conditions models for medical teaching, surgical planning, and patient education. This study aimed to evaluate the accuracy and feasibility of 3D printing in creating a superficial femoral artery pseudoaneurysm model based on CT scans for endovascular training. METHODS: A case of a left superficial femoral artery pseudoaneurysm was selected, and the 3D model was created using DICOM files imported into Materialise Mimics 22.0 and Materialise 3-Matic software, then printed using vat polymerization technology. Two 3D-printed models were created, and a series of comparisons were conducted between the 3D segmented images from CT scans and these two 3D-printed models. Ten comparisons involving internal diameters and angles of the specific anatomical location were measured. RESULTS: The study found that the absolute mean difference in diameter between the 3D segmented images and the 3D printed models was 0.179±0.145 mm and 0.216±0.143mm, respectively, with no significant difference between the two sets of models. Additionally, the absolute mean difference in angle was 0.99±0.65° and 1.00±0.91°, respectively, and the absolute mean difference in angle between the two sets of data was not significant. Bland-Altman analysis confirmed a high correlation in dimension measurements between the 3D-printed models and segmented images. Furthermore, the accuracy of a 3D-printed femoral pseudoaneurysm model was further tested through the simulation of a superficial femoral artery pseudoaneurysm coiling procedure using the Philips Azurion7 in the angiography room. CONCLUSIONS: 3D printing is a reliable technique for producing a high accuracy 3D anatomical model that closely resemble a patient's anatomy based on CT images. Additionally, 3D printing is a feasible and viable option for use in endovascular training and medical education. In general, 3D printing is an encouraging technology with diverse possibilities in medicine, including surgical planning, medical education, and medical device advancement.

摘要

背景:三维(3D)打印技术在许多医学专业中得到了广泛应用。它是一种创新的、快速发展的技术,用于制作定制的解剖模型和医学模型,以用于医学教学、手术规划和患者教育。本研究旨在评估基于 CT 扫描的 3D 打印技术在制作股浅动脉假性动脉瘤模型以进行血管内治疗培训方面的准确性和可行性。

方法:选择一个左侧股浅动脉假性动脉瘤的病例,使用 DICOM 文件导入 Materialise Mimics 22.0 和 Materialise 3-Matic 软件创建 3D 模型,然后使用 vat 聚合技术进行打印。创建了两个 3D 打印模型,并对 CT 扫描的 3D 分割图像与这两个 3D 打印模型进行了一系列比较。测量了十个特定解剖位置的内部直径和角度的比较。

结果:研究发现,3D 分割图像与 3D 打印模型之间直径的绝对平均差异分别为 0.179±0.145mm 和 0.216±0.143mm,两组模型之间无显著差异。此外,角度的绝对平均差异分别为 0.99±0.65°和 1.00±0.91°,两组数据之间的角度绝对平均差异无显著意义。Bland-Altman 分析证实了 3D 打印模型与分割图像之间在尺寸测量方面的高度相关性。此外,通过在血管造影室使用飞利浦 Azurion7 模拟股浅动脉假性动脉瘤线圈程序,进一步测试了 3D 打印股浅动脉假性动脉瘤模型的准确性。

结论:3D 打印是一种可靠的技术,可根据 CT 图像制作高度逼真的 3D 解剖模型,该模型与患者的解剖结构非常相似。此外,3D 打印是血管内治疗培训和医学教育的可行选择。总的来说,3D 打印是一种令人鼓舞的技术,在医学领域具有广泛的应用潜力,包括手术规划、医学教育和医疗器械的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/e9c35aa8ec4c/pone.0304506.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/cb9e95e9c8ac/pone.0304506.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/c4d164247ebc/pone.0304506.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/995a6d538cc4/pone.0304506.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/42968d20bf78/pone.0304506.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/8577a401ea42/pone.0304506.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/e9c35aa8ec4c/pone.0304506.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/cb9e95e9c8ac/pone.0304506.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/c4d164247ebc/pone.0304506.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/995a6d538cc4/pone.0304506.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/42968d20bf78/pone.0304506.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/8577a401ea42/pone.0304506.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b74/11146720/e9c35aa8ec4c/pone.0304506.g006.jpg

相似文献

[1]
Accuracy and feasibility in building a personalized 3D printed femoral pseudoaneurysm model for endovascular training.

PLoS One. 2024

[2]
A systematic evaluation of medical 3D printing accuracy of multi-pathological anatomical models for surgical planning manufactured in elastic and rigid material using desktop inverted vat photopolymerization.

Med Phys. 2021-6

[3]
Accuracy evaluation of patient-specific 3D-printed aortic anatomy.

Ann Anat. 2021-3

[4]
Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.

Anat Sci Educ. 2016

[5]
The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.

Int J Comput Assist Radiol Surg. 2016-8-1

[6]
Accuracy of open-source software segmentation and paper-based printed three-dimensional models.

J Craniomaxillofac Surg. 2016-2

[7]
Investigation of Three-dimensional Printing Materials for Printing Aorta Model Replicating Type B Aortic Dissection.

Curr Med Imaging. 2021

[8]
The Value of 3D Printing Models of Left Atrial Appendage Using Real-Time 3D Transesophageal Echocardiographic Data in Left Atrial Appendage Occlusion: Applications toward an Era of Truly Personalized Medicine.

Cardiology. 2016

[9]
Assessment of a Patient-Specific, 3-Dimensionally Printed Endoscopic Sinus and Skull Base Surgical Model.

JAMA Otolaryngol Head Neck Surg. 2018-7-1

[10]
Modelling of aortic aneurysm and aortic dissection through 3D printing.

J Med Radiat Sci. 2017-3

本文引用的文献

[1]
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.

Children (Basel). 2023-2-7

[2]
Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success.

Radiographics. 2022

[3]
Point-of-care 3D printing: a low-cost approach to teaching carotid artery stenting.

3D Print Med. 2021-9-2

[4]
3D Printing Applications for Radiology: An Overview.

Indian J Radiol Imaging. 2021-1

[5]
A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards.

3D Print Med. 2021-3-22

[6]
Quantitative Assessment of 3D Printed Model Accuracy in Delineating Congenital Heart Disease.

Biomolecules. 2021-2-12

[7]
A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing.

Polymers (Basel). 2021-2-17

[8]
Accessing 3D Printed Vascular Phantoms for Procedural Simulation.

Front Surg. 2021-1-27

[9]
3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease.

Pediatr Cardiol. 2021-1

[10]
The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis.

BMC Med Educ. 2020-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索