文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于协同机器学习/深度学习和人工智能方法的苹果叶斑病检测:科学计量分析。

Apple Leave Disease Detection Using Collaborative ML/DL and Artificial Intelligence Methods: Scientometric Analysis.

机构信息

Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur 303002, India.

Chandigarh Engineering College, Chandigarh Group of Colleges, Landran, Mohali 140307, Punjab, India.

出版信息

Int J Environ Res Public Health. 2023 Feb 12;20(4):3222. doi: 10.3390/ijerph20043222.


DOI:10.3390/ijerph20043222
PMID:36833921
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9961883/
Abstract

Infection in apple leaves is typically brought on by unanticipated weather conditions such as rain, hailstorms, draughts, and fog. As a direct consequence of this, the farmers suffer a significant loss of productivity. It is essential to be able to identify apple leaf diseases in advance in order to prevent the occurrence of this disease and minimise losses to productivity caused by it. The research offers a bibliometric analysis of the effectiveness of artificial intelligence in diagnosing diseases affecting apple leaves. The study provides a bibliometric evaluation of apple leaf disease detection using artificial intelligence. Through an analysis of broad current developments, publication and citation structures, ownership and cooperation patterns, bibliographic coupling, productivity patterns, and other characteristics, this scientometric study seeks to discover apple diseases. Nevertheless, numerous exploratory, conceptual, and empirical studies have concentrated on the identification of apple illnesses. However, given that disease detection is not confined to a single field of study, there have been very few attempts to create an extensive science map of transdisciplinary studies. In bibliometric assessments, it is important to take into account the growing amount of research on this subject. The study synthesises knowledge structures to determine the trend in the research topic. A scientometric analysis was performed on a sample of 214 documents in the subject of identifying apple leaf disease using a scientific search technique on the Scopus database for the years 2011-2022. In order to conduct the study, the Bibliometrix suite's VOSviewer and the web-based Biblioshiny software were also utilised. Important journals, authors, nations, articles, and subjects were chosen using the automated workflow of the software. Furthermore, citation and co-citation checks were performed along with social network analysis. In addition to the intellectual and social organisation of the meadow, this investigation reveals the conceptual structure of the area. It contributes to the body of literature by giving academics and practitioners a strong conceptual framework on which to base their search for solutions and by making perceptive recommendations for potential future research areas.

摘要

苹果叶感染通常是由降雨、雹暴、干旱和雾等意外天气条件引起的。因此,农民的生产力会遭受重大损失。为了预防这种疾病的发生并将其对生产力的损失降到最低,提前识别苹果叶疾病至关重要。本研究对人工智能诊断苹果叶疾病的效果进行了文献计量分析。本研究对利用人工智能检测苹果叶疾病进行了文献计量评估。通过对广泛的当前发展、出版物和引文结构、所有权和合作模式、文献耦合、生产力模式以及其他特征的分析,这项科学计量研究旨在发现苹果疾病。然而,许多探索性、概念性和实证研究都集中在识别苹果疾病上。然而,由于疾病检测不限于单一的研究领域,因此很少有尝试创建一个跨学科研究的广泛科学图谱。在文献计量评估中,考虑到对这一主题的研究不断增加是很重要的。该研究通过对 Scopus 数据库中 2011-2022 年的 214 篇关于识别苹果叶疾病的文献进行科学检索,对知识结构进行综合,以确定研究主题的趋势。为了进行这项研究,还使用了 Bibliometrix 套件的 VOSviewer 和基于网络的 Biblioshiny 软件。该软件的自动化工作流程选择了重要的期刊、作者、国家、文章和主题。此外,还进行了引文和共引检查以及社会网络分析。除了对草地的知识和社会组织进行研究外,本研究还揭示了该领域的概念结构。它为学术界和从业者提供了一个强大的概念框架,使他们能够在寻找解决方案的过程中以此为基础,并对潜在的未来研究领域提出有见地的建议,从而为文献做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/e4d24203d06f/ijerph-20-03222-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/0a300490bf02/ijerph-20-03222-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/ef84652fd050/ijerph-20-03222-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/a8268184cd4f/ijerph-20-03222-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/9d063c13ebaa/ijerph-20-03222-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/1848a167c688/ijerph-20-03222-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/ce6973f11a20/ijerph-20-03222-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/be31dab35247/ijerph-20-03222-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/aa4444471470/ijerph-20-03222-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/6dbfa48391bd/ijerph-20-03222-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/e8af8d7e25cb/ijerph-20-03222-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/3795321496ee/ijerph-20-03222-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/13e0ce9ecbd9/ijerph-20-03222-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/665b2140b625/ijerph-20-03222-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/ff053a80d241/ijerph-20-03222-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/4b16d4946617/ijerph-20-03222-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/4df2d26bbea5/ijerph-20-03222-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/bdfd2148abce/ijerph-20-03222-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/7c599a66bd3b/ijerph-20-03222-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/65fc54b35816/ijerph-20-03222-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/5772f30d5a0a/ijerph-20-03222-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/65e22600b736/ijerph-20-03222-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/828302b37f01/ijerph-20-03222-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/6bf0a42b9646/ijerph-20-03222-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/9d3b45abc704/ijerph-20-03222-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/f09e52edfae9/ijerph-20-03222-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/2ab49e96c09b/ijerph-20-03222-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/c65d901ec05a/ijerph-20-03222-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/64bf3477b2bd/ijerph-20-03222-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/38dcba5b7d56/ijerph-20-03222-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/af20ed1e92f4/ijerph-20-03222-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/e4d24203d06f/ijerph-20-03222-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/0a300490bf02/ijerph-20-03222-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/ef84652fd050/ijerph-20-03222-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/a8268184cd4f/ijerph-20-03222-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/9d063c13ebaa/ijerph-20-03222-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/1848a167c688/ijerph-20-03222-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/ce6973f11a20/ijerph-20-03222-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/be31dab35247/ijerph-20-03222-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/aa4444471470/ijerph-20-03222-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/6dbfa48391bd/ijerph-20-03222-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/e8af8d7e25cb/ijerph-20-03222-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/3795321496ee/ijerph-20-03222-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/13e0ce9ecbd9/ijerph-20-03222-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/665b2140b625/ijerph-20-03222-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/ff053a80d241/ijerph-20-03222-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/4b16d4946617/ijerph-20-03222-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/4df2d26bbea5/ijerph-20-03222-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/bdfd2148abce/ijerph-20-03222-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/7c599a66bd3b/ijerph-20-03222-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/65fc54b35816/ijerph-20-03222-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/5772f30d5a0a/ijerph-20-03222-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/65e22600b736/ijerph-20-03222-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/828302b37f01/ijerph-20-03222-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/6bf0a42b9646/ijerph-20-03222-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/9d3b45abc704/ijerph-20-03222-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/f09e52edfae9/ijerph-20-03222-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/2ab49e96c09b/ijerph-20-03222-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/c65d901ec05a/ijerph-20-03222-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/64bf3477b2bd/ijerph-20-03222-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/38dcba5b7d56/ijerph-20-03222-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/af20ed1e92f4/ijerph-20-03222-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/9961883/e4d24203d06f/ijerph-20-03222-g031.jpg

相似文献

[1]
Apple Leave Disease Detection Using Collaborative ML/DL and Artificial Intelligence Methods: Scientometric Analysis.

Int J Environ Res Public Health. 2023-2-12

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review.

Int J Environ Res Public Health. 2022-12-22

[5]
Artificial intelligence in diabetic retinopathy: Bibliometric analysis.

Comput Methods Programs Biomed. 2023-4

[6]
Artificial intelligence applied to ophthalmology and optometry: A citation network analysis.

J Optom. 2022

[7]
Three-year trends in literature on artificial intelligence in ophthalmology and vision sciences: a protocol for bibliometric analysis.

BMJ Health Care Inform. 2022-10

[8]
A scientometric analysis of neuroblastoma research.

BMC Cancer. 2020-5-29

[9]
Bibliometric Analysis and Visualization of Scientific Literature on Heart Disease Classification Using a Logistic Regression Model.

Cureus. 2024-6-27

[10]
Characteristics, Impact, and Visibility of Scientific Publications on Artificial Intelligence in Dentistry: A Scientometric Analysis.

J Contemp Dent Pract. 2022-8-1

引用本文的文献

[1]
A scientometric study of research: trending issues, hotspot research, and co-citation analysis.

Front Res Metr Anal. 2024-11-27

本文引用的文献

[1]
Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework.

Environ Sci Pollut Res Int. 2022-11

[2]
Apple Leaf Disease Identification with a Small and Imbalanced Dataset Based on Lightweight Convolutional Networks.

Sensors (Basel). 2021-12-28

[3]
Research collaborations bring big rewards: the world needs more.

Nature. 2021-6

[4]
General Data Protection Regulation (GDPR) in Healthcare: Hot Topics and Research Fronts.

Stud Health Technol Inform. 2020-6-16

[5]
Collaborative research in modern era: Need and challenges.

Indian J Pharmacol. 2019

[6]
Development of a DNA Macroarray for Detection and Monitoring of Economically Important Apple Diseases.

Plant Dis. 2005-11

[7]
Exploring PubMed as a reliable resource for scholarly communications services.

J Med Libr Assoc. 2019-1

[8]
Use of locally weighted scatterplot smoothing (LOWESS) regression to study selection signatures in Piedmontese and Italian Brown cattle breeds.

Anim Genet. 2014-2

[9]
Citation analysis of the contact lens field.

Optom Vis Sci. 2012-1

[10]
Software survey: VOSviewer, a computer program for bibliometric mapping.

Scientometrics. 2010-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索