文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于轻量化卷积神经网络的小样本和不平衡数据集的苹果叶病害识别。

Apple Leaf Disease Identification with a Small and Imbalanced Dataset Based on Lightweight Convolutional Networks.

机构信息

College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030800, China.

College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030800, China.

出版信息

Sensors (Basel). 2021 Dec 28;22(1):173. doi: 10.3390/s22010173.


DOI:10.3390/s22010173
PMID:35009716
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8749501/
Abstract

The intelligent identification and classification of plant diseases is an important research objective in agriculture. In this study, in order to realize the rapid and accurate identification of apple leaf disease, a new lightweight convolutional neural network RegNet was proposed. A series of comparative experiments had been conducted based on 2141 images of 5 apple leaf diseases (rust, scab, ring rot, panonychus ulmi, and healthy leaves) in the field environment. To assess the effectiveness of the RegNet model, a series of comparison experiments were conducted with state-of-the-art convolutional neural networks (CNN) such as ShuffleNet, EfficientNet-B0, MobileNetV3, and Vision Transformer. The results show that RegNet-Adam with a learning rate of 0.0001 obtained an average accuracy of 99.8% on the validation set and an overall accuracy of 99.23% on the test set, outperforming all other pre-trained models. In other words, the proposed method based on transfer learning established in this research can realize the rapid and accurate identification of apple leaf disease.

摘要

植物病害的智能识别与分类是农业领域的一个重要研究目标。在这项研究中,为了实现苹果叶病害的快速准确识别,提出了一种新的轻量级卷积神经网络 RegNet。在田间环境下,对 5 种苹果叶病害(锈病、黑星病、轮纹病、苹果红蜘蛛和健康叶片)的 2141 张图像进行了一系列的对比实验。为了评估 RegNet 模型的有效性,与 ShuffleNet、EfficientNet-B0、MobileNetV3 和 Vision Transformer 等先进的卷积神经网络(CNN)进行了一系列的对比实验。结果表明,在验证集上,学习率为 0.0001 的 RegNet-Adam 获得了 99.8%的平均准确率,在测试集上的整体准确率为 99.23%,优于所有其他预训练模型。换句话说,本研究基于迁移学习建立的方法可以实现苹果叶病害的快速准确识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/268ef232a0fc/sensors-22-00173-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/30830497afaf/sensors-22-00173-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/bae0a12ce9ac/sensors-22-00173-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/c86f6822b929/sensors-22-00173-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/1a945851a702/sensors-22-00173-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/3d29ea1eac8e/sensors-22-00173-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/284b37526f10/sensors-22-00173-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/b3358cd1cded/sensors-22-00173-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/268ef232a0fc/sensors-22-00173-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/30830497afaf/sensors-22-00173-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/bae0a12ce9ac/sensors-22-00173-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/c86f6822b929/sensors-22-00173-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/1a945851a702/sensors-22-00173-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/3d29ea1eac8e/sensors-22-00173-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/284b37526f10/sensors-22-00173-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/b3358cd1cded/sensors-22-00173-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7363/8749501/268ef232a0fc/sensors-22-00173-g008.jpg

相似文献

[1]
Apple Leaf Disease Identification with a Small and Imbalanced Dataset Based on Lightweight Convolutional Networks.

Sensors (Basel). 2021-12-28

[2]
Apple Leaf Diseases Recognition Based on An Improved Convolutional Neural Network.

Sensors (Basel). 2020-6-22

[3]
Identification of Multiple Diseases in Apple Leaf Based on Optimized Lightweight Convolutional Neural Network.

Plants (Basel). 2024-6-1

[4]
A method of detecting apple leaf diseases based on improved convolutional neural network.

PLoS One. 2022

[5]
An improved YOLOv5-based apple leaf disease detection method.

Sci Rep. 2024-7-30

[6]
Crop Disease Identification by Fusing Multiscale Convolution and Vision Transformer.

Sensors (Basel). 2023-6-29

[7]
Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning.

Comput Intell Neurosci. 2017

[8]
A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases.

Sensors (Basel). 2021-7-12

[9]
Using a novel convolutional neural network for plant pests detection and disease classification.

J Sci Food Agric. 2023-9

[10]
Detecting fungi-affected multi-crop disease on heterogeneous region dataset using modified ResNeXt approach.

Environ Monit Assess. 2024-6-11

引用本文的文献

[1]
A fine tuned EfficientNet-B0 convolutional neural network for accurate and efficient classification of apple leaf diseases.

Sci Rep. 2025-7-16

[2]
A lightweight MHDI-DETR model for detecting grape leaf diseases.

Front Plant Sci. 2024-12-6

[3]
Deep migration learning-based recognition of diseases and insect pests in Yunnan tea under complex environments.

Plant Methods. 2024-7-5

[4]
Identification of Multiple Diseases in Apple Leaf Based on Optimized Lightweight Convolutional Neural Network.

Plants (Basel). 2024-6-1

[5]
Genome-wide characterization and functional identification of genes in infected by .

Front Plant Sci. 2023-4-5

[6]
Diagnosis and Mobile Application of Apple Leaf Disease Degree Based on a Small-Sample Dataset.

Plants (Basel). 2023-2-9

[7]
Apple Leave Disease Detection Using Collaborative ML/DL and Artificial Intelligence Methods: Scientometric Analysis.

Int J Environ Res Public Health. 2023-2-12

[8]
Dilated convolution capsule network for apple leaf disease identification.

Front Plant Sci. 2022-11-1

[9]
A Classification Method for Electronic Components Based on Siamese Network.

Sensors (Basel). 2022-8-28

[10]
A Hybrid Deep Learning and Visualization Framework for Pushing Behavior Detection in Pedestrian Dynamics.

Sensors (Basel). 2022-5-26

本文引用的文献

[1]
Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM.

Neurocomputing (Amst). 2022-4-7

[2]
Using Deep Learning for Image-Based Plant Disease Detection.

Front Plant Sci. 2016-9-22

[3]
The problem of overfitting.

J Chem Inf Comput Sci. 2004

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索