文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

口服吉非替尼纳米立方液晶对结肠癌的抗肿瘤活性

Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer.

作者信息

El-Shenawy Ahmed A, Elsayed Mahmoud M A, Atwa Gamal M K, Abourehab Mohammed A S, Mohamed Mohamed S, Ghoneim Mohammed M, Mahmoud Reda A, Sabry Shereen A, Anwar Walid, El-Sherbiny Mohamed, Hassan Yasser A, Belal Amany, Ramadan Abd El Hakim

机构信息

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.

Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.

出版信息

Pharmaceutics. 2023 Feb 17;15(2):680. doi: 10.3390/pharmaceutics15020680.


DOI:10.3390/pharmaceutics15020680
PMID:36840004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9960579/
Abstract

Gefitinib (GFT) is a tyrosine kinase inhibitor drug used as a first-line treatment for patients with advanced or metastatic non-small cell lung, colon, and breast cancer. GFT exhibits low solubility and hence low oral bioavailability, which restricts its clinical application. One of the most important trends in overcoming such problems is the use of a vesicular system. Cubosomes are considered one of the most important vesicular systems used to improve solubility and oral bioavailability. In this study, GFT cubosomal nanoparticles (GFT-CNPs) were prepared by the emulsification method. The selected formulation variables were analyzed and optimized by full factorial design and response surface methodology. Drug entrapment efficiency (EE%), transmission electron microscopy, particle size, polydispersity index, in vitro release and its kinetics, and the effect of storage studies were estimated. The chosen GFT-CNPs were subjected to further investigations as gene expression levels of tissue inhibitors of metalloproteinases-1 (TIMP-1) and matrix metalloproteinases-7 (MMP-7), colon biomarkers, and histopathological examination of colon tissues. The prepared GFT-CNPs were semi-cubic in shape, with high EE%, smaller vesicle size, and higher zeta potential values. The in vivo data showed a significant decrease in the serum level of embryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), and gene expression level of TIMP-1 and MMP-7. Histopathological examination showed enhancement in cancer tissue and highly decreased focal infiltration in the lamina propria after treatment with GFT-CNPs.

摘要

吉非替尼(GFT)是一种酪氨酸激酶抑制剂药物,用作晚期或转移性非小细胞肺癌、结肠癌和乳腺癌患者的一线治疗药物。GFT的溶解度低,因此口服生物利用度也低,这限制了其临床应用。克服这些问题的最重要趋势之一是使用囊泡系统。立方液晶相脂质体被认为是用于提高溶解度和口服生物利用度的最重要囊泡系统之一。在本研究中,通过乳化法制备了GFT立方液晶相纳米粒(GFT-CNPs)。通过全因子设计和响应面法对选定的制剂变量进行了分析和优化。评估了药物包封率(EE%)、透射电子显微镜、粒径、多分散指数、体外释放及其动力学以及储存研究的影响。对选定的GFT-CNPs进行了进一步研究,检测了金属蛋白酶组织抑制剂-1(TIMP-1)和基质金属蛋白酶-7(MMP-7)的基因表达水平、结肠生物标志物以及结肠组织的组织病理学检查。所制备的GFT-CNPs呈半立方体形,具有高EE%、较小的囊泡尺寸和较高的ζ电位值。体内数据显示胚胎抗原(CEA)、糖类抗原19-9(CA 19-9)的血清水平以及TIMP-1和MMP-7的基因表达水平显著降低。组织病理学检查显示,用GFT-CNPs治疗后,癌组织有所改善,固有层的局灶性浸润显著减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/bc6013988bc1/pharmaceutics-15-00680-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/14283cba169c/pharmaceutics-15-00680-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/bf619fdabc44/pharmaceutics-15-00680-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/441bdf4745f1/pharmaceutics-15-00680-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/3b480896bc25/pharmaceutics-15-00680-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/f4c930605826/pharmaceutics-15-00680-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/ccc2bd3d2585/pharmaceutics-15-00680-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/2215dba89234/pharmaceutics-15-00680-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/043b88d50f8d/pharmaceutics-15-00680-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/fe7b5b284ddf/pharmaceutics-15-00680-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/73d1641fdbc7/pharmaceutics-15-00680-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/313b1623c395/pharmaceutics-15-00680-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/e40cd3d2d58b/pharmaceutics-15-00680-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/73d0d47ad916/pharmaceutics-15-00680-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/bc6013988bc1/pharmaceutics-15-00680-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/14283cba169c/pharmaceutics-15-00680-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/bf619fdabc44/pharmaceutics-15-00680-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/441bdf4745f1/pharmaceutics-15-00680-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/3b480896bc25/pharmaceutics-15-00680-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/f4c930605826/pharmaceutics-15-00680-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/ccc2bd3d2585/pharmaceutics-15-00680-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/2215dba89234/pharmaceutics-15-00680-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/043b88d50f8d/pharmaceutics-15-00680-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/fe7b5b284ddf/pharmaceutics-15-00680-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/73d1641fdbc7/pharmaceutics-15-00680-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/313b1623c395/pharmaceutics-15-00680-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/e40cd3d2d58b/pharmaceutics-15-00680-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/73d0d47ad916/pharmaceutics-15-00680-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/9960579/bc6013988bc1/pharmaceutics-15-00680-g014.jpg

相似文献

[1]
Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer.

Pharmaceutics. 2023-2-17

[2]
Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells.

Pharmaceuticals (Basel). 2023-11-2

[3]
Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management.

Drug Deliv. 2022-12

[4]
Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines.

Saudi J Biol Sci. 2021-9

[5]
Celecoxib-Loaded Cubosomal Nanoparticles as a Therapeutic Approach for In Vivo Infection.

Microorganisms. 2023-9-6

[6]
QbD-based optimization of raloxifene-loaded cubosomal formulation for transdemal delivery: ex vivo permeability and in vivo pharmacokinetic studies.

Drug Deliv Transl Res. 2022-12

[7]
Design and Optimization of Orally Administered Luteolin Nanoethosomes to Enhance Its Anti-Tumor Activity against Hepatocellular Carcinoma.

Pharmaceutics. 2021-5-2

[8]
Overexpression of Napsin A resensitizes drug-resistant lung cancer A549 cells to gefitinib by inhibiting EMT.

Oncol Lett. 2018-8

[9]
Box Behnken optimization of cubosomes for enhancing the anticancer activity of metformin: Design, characterization, and in-vitro cell proliferation assay on MDA-MB-231 breast and LOVO colon cancer cell lines.

Int J Pharm X. 2023-8-25

[10]
Topical Delivery of Erythromycin Through Cubosomes for Acne.

Pharm Nanotechnol. 2018

引用本文的文献

[1]
Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs.

Front Drug Deliv. 2023-8-24

[2]
Development of Chitosan-Coated Atorvastatin-Loaded Liquid Crystalline Nanoparticles: Intersection of Drug Repurposing and Nanotechnology in Colorectal Cancer Management.

Pharmaceutics. 2025-5-27

[3]
Development of -alkylated benzimidazole based cubosome hydrogel for topical treatment of burns.

RSC Adv. 2024-10-10

[4]
Verapamil-Loaded Cubosomes for Enhancing Intranasal Drug Delivery: Development, Characterization, Ex Vivo Permeation, and Brain Biodistribution Studies.

AAPS PharmSciTech. 2024-5-6

[5]
Advancing therapeutic efficacy: nanovesicular delivery systems for medicinal plant-based therapeutics.

Naunyn Schmiedebergs Arch Pharmacol. 2024-10

[6]
Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy.

Int J Pharm X. 2024-2-4

[7]
Characterization and Bio-Evaluation of the Synergistic Effect of Simvastatin and Folic Acid as Wound Dressings on the Healing Process.

Pharmaceutics. 2023-10-4

[8]
Efficient Cytotoxicity of Recombinant Azurin in Nissle 1917-Derived Minicells against Colon Cancer Cells.

Bioengineering (Basel). 2023-10-13

[9]
The loss of B7-H4 expression in breast cancer cells escaping from T cell cytotoxicity contributes to epithelial-to-mesenchymal transition.

Breast Cancer Res. 2023-10-4

本文引用的文献

[1]
Clinical study on the efficacy of hepatitis B vaccination in hepatitis C virus related chronic liver diseases in Egypt.

Virus Res. 2023-1-2

[2]
A Novel C@Fe@Cu Nanocomposite Loaded with Doxorubicin Tailored for the Treatment of Hepatocellular Carcinoma.

Pharmaceutics. 2022-9-1

[3]
Tailoring of Rosuvastatin Calcium and Atenolol Bilayer Tablets for the Management of Hyperlipidemia Associated with Hypertension: A Preclinical Study.

Pharmaceutics. 2022-8-4

[4]
Intranasal Delivery of Granisetron to the Brain via Nanostructured Cubosomes-Based In Situ Gel for Improved Management of Chemotherapy-Induced Emesis.

Pharmaceutics. 2022-6-29

[5]
Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management.

Drug Deliv. 2022-12

[6]
Tolmetin Sodium Fast Dissolving Tablets for Rheumatoid Arthritis Treatment: Preparation and Optimization Using Box-Behnken Design and Response Surface Methodology.

Pharmaceutics. 2022-4-18

[7]
Tailoring of Novel Azithromycin-Loaded Zinc Oxide Nanoparticles for Wound Healing.

Pharmaceutics. 2022-1-5

[8]
Transdermal Delivery of Telmisartan: Formulation, in vitro, ex vivo, Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats.

Drug Des Devel Ther. 2021

[9]
Delivery of therapeutic oligonucleotides in nanoscale.

Bioact Mater. 2021-6-12

[10]
Cubosomes: Versatile Nanosized Formulation for Efficient Delivery of Therapeutics.

Curr Drug Deliv. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索