Suppr超能文献

运用图论技术探究单侧脑瘫患儿的结构连接组

Exploring structural connectomes in children with unilateral cerebral palsy using graph theory.

机构信息

Leuven Brain Institute, KU Leuven, Leuven, Belgium.

Department of Imaging & Pathology, KU Leuven, Leuven, Belgium.

出版信息

Hum Brain Mapp. 2023 May;44(7):2741-2753. doi: 10.1002/hbm.26241. Epub 2023 Feb 25.

Abstract

We explored structural brain connectomes in children with spastic unilateral cerebral palsy (uCP) and its relation to sensory-motor function using graph theory. In 46 children with uCP (mean age = 10 years 7 months ± 2 years 9 months; Manual Ability Classification System I = 15, II = 16, III = 15) we assessed upper limb somatosensory and motor function. We collected multi-shell diffusion-weighted, T1-weighted and T2-FLAIR MRI and identified the corticospinal tract (CST) wiring pattern using transcranial magnetic stimulation. Structural connectomes were constructed using Virtual Brain Grafting-modified FreeSurfer parcellations and multi-shell multi-tissue constrained spherical deconvolution-based anatomically-constrained tractography. Graph metrics (characteristic path length, global/local efficiency and clustering coefficient) of the whole brain, the ipsilesional/contralesional hemisphere, and the full/ipsilesional/contralesional sensory-motor network were compared between lesion types (periventricular white matter (PWM) = 28, cortical and deep gray matter (CDGM) = 18) and CST-wiring patterns (ipsilateral = 14, bilateral = 14, contralateral = 12, unknown = 6) using ANCOVA with age as covariate. Using elastic-net regularized regression we investigated how graph metrics, lesion volume, lesion type, CST-wiring pattern and age predicted sensory-motor function. In both the whole brain and subnetworks, we observed a hyperconnectivity pattern in children with CDGM-lesions compared with PWM-lesions, with higher clustering coefficient (p = [<.001-.047], =[0.09-0.27]), characteristic path length (p = .003, =0.19) and local efficiency (p = [.001-.02], =[0.11-0.21]), and a lower global efficiency with age (p = [.01-.04], =[0.09-0.15]). No differences were found between CST-wiring groups. Overall, good predictions of sensory-motor function were obtained with elastic-net regression (R  = .40-.87). CST-wiring pattern was the strongest predictor for motor function. For somatosensory function, all independent variables contributed equally to the model. In conclusion, we demonstrated the potential of structural connectomics in understanding disease severity and brain development in children with uCP.

摘要

我们使用图论研究了痉挛性单侧脑瘫(uCP)患儿的结构性脑连接组,并探讨了其与感觉运动功能的关系。在 46 名 uCP 患儿(平均年龄 10 岁 7 个月 ± 2 岁 9 个月;手动能力分类系统 I = 15,II = 16,III = 15)中,我们评估了上肢感觉运动功能。我们采集了多壳扩散加权、T1 加权和 T2-FLAIR MRI,并使用经颅磁刺激识别皮质脊髓束(CST)布线模式。使用基于虚拟脑移植的 FreeSurfer 分割和多壳多组织约束球谐分解的解剖约束轨迹追踪来构建结构连接组。使用协方差分析(年龄为协变量)比较了病变类型(脑室周围白质(PWM)= 28,皮质和深部灰质(CDGM)= 18)和 CST 布线模式(同侧= 14,双侧= 14,对侧= 12,未知= 6)之间的全脑、优势半球/非优势半球以及全感觉运动网络的图论指标(特征路径长度、全局/局部效率和聚类系数)。使用弹性网络正则化回归,我们研究了图论指标、病变体积、病变类型、CST 布线模式和年龄如何预测感觉运动功能。在全脑和子网络中,与 PWM 病变相比,CDGM 病变患儿表现出超连接模式,表现为更高的聚类系数(p = [<.001-.047], = [0.09-0.27])、特征路径长度(p =.003, = 0.19)和局部效率(p = [.001-.02], = [0.11-0.21]),并且随着年龄的增长,全局效率降低(p = [.01-.04], = [0.09-0.15])。CST 布线组之间没有差异。总体而言,弹性网络回归得到了良好的感觉运动功能预测(R =.40-.87)。CST 布线模式是运动功能的最强预测因子。对于体感功能,所有自变量对模型的贡献均等。总之,我们证明了结构连接组学在理解 uCP 患儿疾病严重程度和大脑发育方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2413/10089093/8978f3421bc1/HBM-44-2741-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验