Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
Sci Rep. 2021 Apr 27;11(1):9068. doi: 10.1038/s41598-021-87564-6.
The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.
高级归一化工具生态系统,称为 ANTsX,由多个开源软件库组成,这些软件库中包含全球科学和研究社区用于处理和分析生物和医学成像数据的高性能算法。基础软件库 ANTs 建立在由 NIH 赞助的 Insight Toolkit 之上,并为其做出贡献。该库成立于 2008 年,具有备受推崇的对称归一化图像配准框架,此后已发展出更多功能。最近的增强功能包括通过与 R 统计项目(ANTsR)和 Python(ANTsPy)接口实现的统计、可视化和深度学习功能。此外,相应的深度学习扩展 ANTsRNet 和 ANTsPyNet(基于流行的 TensorFlow/Keras 库)包含了几个用于特定应用的流行网络架构和训练模型。一个这样的综合应用是从结构 T1 加权脑 MRI 生成皮质厚度数据的深度学习模拟,包括横向和纵向。这些流水线在多个标准下显著提高了计算效率,并提供了与现有的 ANTs 工作流程相当甚至更好的准确性,同时说明了全面的 ANTsX 方法作为医学图像分析框架的重要性。