Suppr超能文献

虚拟脑嫁接:在存在大病灶的情况下实现全脑分割。

Virtual brain grafting: Enabling whole brain parcellation in the presence of large lesions.

机构信息

KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium.

KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium.

出版信息

Neuroimage. 2021 Apr 1;229:117731. doi: 10.1016/j.neuroimage.2021.117731. Epub 2021 Jan 14.

Abstract

Brain atlases and templates are at the heart of neuroimaging analyses, for which they facilitate multimodal registration, enable group comparisons and provide anatomical reference. However, as atlas-based approaches rely on correspondence mapping between images they perform poorly in the presence of structural pathology. Whilst several strategies exist to overcome this problem, their performance is often dependent on the type, size and homogeneity of any lesions present. We therefore propose a new solution, referred to as Virtual Brain Grafting (VBG), which is a fully-automated, open-source workflow to reliably parcellate magnetic resonance imaging (MRI) datasets in the presence of a broad spectrum of focal brain pathologies, including large, bilateral, intra- and extra-axial, heterogeneous lesions with and without mass effect. The core of the VBG approach is the generation of a lesion-free T1-weighted image, which enables further image processing operations that would otherwise fail. Here we validated our solution based on Freesurfer recon-all parcellation in a group of 10 patients with heterogeneous gliomatous lesions, and a realistic synthetic cohort of glioma patients (n = 100) derived from healthy control data and patient data. We demonstrate that VBG outperforms a non-VBG approach assessed qualitatively by expert neuroradiologists and Mann-Whitney U tests to compare corresponding parcellations (real patients U(6,6) = 33, z = 2.738, P < .010, synthetic-patients U(48,48) = 2076, z = 7.336, P < .001). Results were also quantitatively evaluated by comparing mean dice scores from the synthetic-patients using one-way ANOVA (unilateral VBG = 0.894, bilateral VBG = 0.903, and non-VBG = 0.617, P < .001). Additionally, we used linear regression to show the influence of lesion volume, lesion overlap with, and distance from the Freesurfer volumes of interest, on labeling accuracy. VBG may benefit the neuroimaging community by enabling automated state-of-the-art MRI analyses in clinical populations using methods such as FreeSurfer, CAT12, SPM, Connectome Workbench, as well as structural and functional connectomics. To fully maximize its availability, VBG is provided as open software under a Mozilla 2.0 license (https://github.com/KUL-Radneuron/KUL_VBG).

摘要

脑图谱和模板是神经影像学分析的核心,它们促进了多模态配准,实现了组间比较,并提供了解剖参考。然而,由于基于图谱的方法依赖于图像之间的对应映射,因此在存在结构病理学的情况下表现不佳。虽然有几种策略可以克服这个问题,但它们的性能往往取决于任何病变的类型、大小和同质性。因此,我们提出了一种新的解决方案,称为虚拟大脑移植(VBG),这是一种完全自动化的开源工作流程,可以在存在广泛的局灶性脑病理学的情况下可靠地分割磁共振成像(MRI)数据集,包括大的、双侧的、颅内和颅外的、具有和不具有质量效应的异质病变。VBG 方法的核心是生成无病变的 T1 加权图像,这使得进一步的图像处理操作成为可能,否则这些操作将失败。在这里,我们基于 10 名患有异质性神经胶质瘤病变的患者和从健康对照数据和患者数据中衍生的 100 名真实合成神经胶质瘤患者的 Freesurfer recon-all 分割来验证我们的解决方案。我们证明,VBG 在定性上优于非 VBG 方法,这是由神经放射科专家评估的,并且 Mann-Whitney U 检验用于比较相应的分割(实际患者 U(6,6)=33,z=2.738,P<.010,合成患者 U(48,48)=2076,z=7.336,P<.001)。还通过比较使用单向方差分析从合成患者获得的平均骰子分数来定量评估结果(单侧 VBG=0.894,双侧 VBG=0.903,非 VBG=0.617,P<.001)。此外,我们使用线性回归来显示病变体积、病变与 Freesurfer 感兴趣区的重叠程度以及病变与 Freesurfer 感兴趣区的距离对标记准确性的影响。VBG 可以通过在临床人群中使用 FreeSurfer、CAT12、SPM、Connectome Workbench 以及结构和功能连接组学等方法实现自动化的最先进的 MRI 分析,从而使神经影像学社区受益。为了充分发挥其可用性,VBG 作为一个 Mozilla 2.0 许可证下的开源软件提供(https://github.com/KUL-Radneuron/KUL_VBG)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验