Suppr超能文献

利用机器学习方法描述治疗参数、复杂度的相互作用及其对 IROC IMRT 体模性能的影响。

Characterizing the interplay of treatment parameters and complexity and their impact on performance on an IROC IMRT phantom using machine learning.

机构信息

IROC Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.

IROC Houston Quality Assurance Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Radiother Oncol. 2023 May;182:109577. doi: 10.1016/j.radonc.2023.109577. Epub 2023 Feb 24.

Abstract

AIM OF THE STUDY

To elucidate the important factors and their interplay that drive performance on IMRT phantoms from the Imaging and Radiation Oncology Core (IROC).

METHODS

IROC's IMRT head and neck phantom contains two targets and an organ at risk. Point and 2D dose are measured by TLDs and film, respectively. 1,542 irradiations between 2012-2020 were retrospectively analyzed based on output parameters, complexity metrics, and treatment parameters. Univariate analysis compared parameters based on pass/fail, and random forest modeling was used to predict output parameters and determine the underlying importance of the variables.

RESULTS

The average phantom pass rate was 92% and has not significantly improved over time. The step-and-shoot irradiation technique had significantly lower pass rates that significantly affected other treatment parameters' pass rates. The complexity of plans has significantly increased with time, and all aperture-based complexity metrics (except MCS) were associated with the probability of failure. Random forest-based prediction of failure had an accuracy of 98% on held-out test data not used in model training. While complexity metrics were the most important contributors, the specific metric depended on the set of treatment parameters used during the irradiation.

CONCLUSION

With the prevalence of errors in radiotherapy, understanding which parameters affect treatment delivery is vital to improve patient treatment. Complexity metrics were strongly predictive of irradiation failure; however, they are dependent on the specific treatment parameters. In addition, the use of one complexity metric is insufficient to monitor all aspects of the treatment plan.

摘要

研究目的

阐明成像和放射肿瘤学核心(IROC)驱动调强放射治疗体模性能的重要因素及其相互作用。

方法

IROC 的调强头颈体模包含两个靶区和一个危及器官。点剂量和二维剂量分别通过 TLD 和胶片进行测量。基于输出参数、复杂性指标和治疗参数,对 2012 年至 2020 年间的 1542 次照射进行了回顾性分析。单变量分析根据通过/失败比较参数,随机森林建模用于预测输出参数并确定变量的基本重要性。

结果

平均体模通过率为 92%,且随着时间的推移没有显著提高。步进扫描照射技术的通过率明显较低,这显著影响了其他治疗参数的通过率。计划的复杂性随着时间的推移显著增加,并且所有基于孔径的复杂性指标(MCS 除外)都与失败的概率相关。基于随机森林的失败预测在未用于模型训练的保留测试数据上的准确率为 98%。虽然复杂性指标是最重要的贡献者,但特定的指标取决于照射过程中使用的特定治疗参数。

结论

随着放射治疗中错误的普遍存在,了解哪些参数影响治疗输送对于改善患者治疗至关重要。复杂性指标强烈预测照射失败;然而,它们取决于特定的治疗参数。此外,使用单一复杂性指标不足以监测治疗计划的所有方面。

相似文献

2
Treatment plan complexity does not predict IROC Houston anthropomorphic head and neck phantom performance.
Phys Med Biol. 2018 Oct 17;63(20):205015. doi: 10.1088/1361-6560/aae29e.
4
Multi-institution single geometry plan complexity characteristics based on IROC phantoms.
Med Phys. 2024 Aug;51(8):5693-5707. doi: 10.1002/mp.17086. Epub 2024 Apr 26.
6
Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures.
J Appl Clin Med Phys. 2020 Feb;21(2):82-88. doi: 10.1002/acm2.12819. Epub 2020 Jan 21.
7
Implementation of phantom-less IMRT delivery verification using Varian DynaLog files and R/V output.
Phys Med Biol. 2012 Nov 7;57(21):6761-77. doi: 10.1088/0031-9155/57/21/6761. Epub 2012 Oct 3.
10
Impact of grid size on uniform scanning and IMPT plans in XiO treatment planning system for brain cancer.
J Appl Clin Med Phys. 2015 Sep 8;16(5):447–456. doi: 10.1120/jacmp.v16i5.5510.

本文引用的文献

1
Recurrence Patterns After IMRT/VMAT in Head and Neck Cancer.
Front Oncol. 2021 Sep 16;11:720052. doi: 10.3389/fonc.2021.720052. eCollection 2021.
2
Edge area metric complexity scoring of volumetric modulated arc therapy plans.
Phys Imaging Radiat Oncol. 2021 Mar 6;17:124-129. doi: 10.1016/j.phro.2021.02.002. eCollection 2021 Jan.
4
On the reduction of aperture complexity in kidney SABR.
J Appl Clin Med Phys. 2021 Apr;22(4):71-81. doi: 10.1002/acm2.13215. Epub 2021 Mar 23.
6
Comparison of complexity metrics for multi-institutional evaluations of treatment plans in radiotherapy.
Phys Imaging Radiat Oncol. 2018 Feb 22;5:37-43. doi: 10.1016/j.phro.2018.02.002. eCollection 2018 Jan.
7
8
What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans.
Radiother Oncol. 2020 Dec;153:26-33. doi: 10.1016/j.radonc.2020.09.038. Epub 2020 Sep 25.
9
Head and Neck Cancer. Reply.
N Engl J Med. 2020 May 14;382(20):e57. doi: 10.1056/NEJMc2001370.
10
Survey results of 3D-CRT and IMRT quality assurance practice.
J Appl Clin Med Phys. 2020 Jul;21(7):70-76. doi: 10.1002/acm2.12885. Epub 2020 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验