Suppr超能文献

当前基于数据的计算精神病学方法在基于大脑的亚型识别中的应用。

Current Approaches in Computational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes.

机构信息

Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota.

Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.

出版信息

Biol Psychiatry. 2023 Apr 15;93(8):704-716. doi: 10.1016/j.biopsych.2022.12.020. Epub 2022 Dec 30.

Abstract

The ability of our current psychiatric nosology to accurately delineate clinical populations and inform effective treatment plans has reached a critical point with only moderately successful interventions and high relapse rates. These challenges continue to motivate the search for approaches to better stratify clinical populations into more homogeneous delineations, to better inform diagnosis and disease evaluation, and prescribe and develop more precise treatment plans. The promise of brain-based subtyping based on neuroimaging data is that finding subgroups of individuals with a common biological signature will facilitate the development of biologically grounded, targeted treatments. This review provides a snapshot of the current state of the field in empirical brain-based subtyping studies in child, adolescent, and adult psychiatric populations published between 2019 and March 2022. We found that there is vast methodological exploration and a surprising number of new methods being created for the specific purpose of brain-based subtyping. However, this methodological exploration and advancement is not being met with rigorous validation approaches that assess both reproducibility and clinical utility of the discovered brain-based subtypes. We also found evidence for a collaboration crisis, in which methodological exploration and advancements are not clearly grounded in clinical goals. We propose several steps that we believe are crucial to address these shortcomings in the field. We conclude, and agree with the authors of the reviewed studies, that the discovery of biologically grounded subtypes would be a significant advancement for treatment development in psychiatry.

摘要

当前的精神病学分类学能够准确地区分临床人群并为有效的治疗计划提供信息,但干预效果仅为中等,且复发率很高,这使得其已经达到了一个关键的临界点。这些挑战继续促使人们寻找方法,将临床人群更精确地划分为更同质的分类,以更好地为诊断和疾病评估提供信息,并制定更精确的治疗计划。基于神经影像学数据的大脑亚型分类的前景在于,找到具有共同生物学特征的个体亚组将有助于开发基于生物学的靶向治疗。本综述提供了 2019 年至 2022 年 3 月期间发表的儿童、青少年和成年精神病学人群中基于经验的大脑亚型分类研究领域的现状快照。我们发现,存在大量的方法学探索,并且为了专门进行大脑亚型分类,还创建了许多新的方法。然而,这种方法学的探索和进步并没有与严格的验证方法相结合,这些方法评估了所发现的基于大脑的亚型的可重复性和临床实用性。我们还发现了证据表明存在合作危机,即方法学的探索和进步并未明确以临床目标为基础。我们提出了几个步骤,我们认为这些步骤对于解决该领域的这些缺陷至关重要。我们得出结论,并同意所审查研究的作者的观点,即发现基于生物学的亚型将是精神病学治疗发展的重大进展。

相似文献

2
Imaging-Based Subtyping for Psychiatric Syndromes.基于影像的精神综合征亚型分类。
Neuroimaging Clin N Am. 2020 Feb;30(1):35-44. doi: 10.1016/j.nic.2019.09.005. Epub 2019 Nov 11.
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

4
When biomarkers for major depressive disorder remain elusive.当重度抑郁症的生物标志物仍然难以捉摸时。
Med Rev (2021). 2024 Dec 24;5(2):177-178. doi: 10.1515/mr-2024-0082. eCollection 2025 Apr.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验