文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SARS-CoV-2 突变和保守区域的全球景观。

Global landscape of SARS-CoV-2 mutations and conserved regions.

机构信息

Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.

Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.

出版信息

J Transl Med. 2023 Feb 25;21(1):152. doi: 10.1186/s12967-023-03996-w.


DOI:10.1186/s12967-023-03996-w
PMID:36841805
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9958328/
Abstract

BACKGROUND: At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS: 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS: Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION: Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.

摘要

背景:2019 年 12 月底,在中国中部城市武汉发现了一种新型严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)疾病(COVID-19),随后传播到全球各个角落。截至 2022 年 10 月 8 日,全球 COVID-19 病例总数已超过 6.21 亿例,确诊死亡病例超过 656 万例。由于 SARS-CoV-2 基因组序列因突变和重组而发生变化,因此监测新出现的变异体并监测变化对于改善大流行管理至关重要。

方法:从 2020 年 2 月 24 日至 2022 年 4 月,从 GISAID 数据库以 FASTA 格式下载了 10287271 个 SARS-CoV-2 基因组序列样本。使用 Python 编程语言(版本 3.8.0)软件处理 FASTA 文件以识别变体和序列保守性。将 NCBI RefSeq SARS-CoV-2 基因组(注册号 NC_045512.2)视为参考序列。

结果:全球 SARS-CoV-2 中有 6 个突变的频率超过 50%。这些突变包括 NSP12 中的 P323L(99.3%)、S 中的 D614G(97.6)、NSP4 中的 T492I(70.4%)、N 中的 R203M(62.8%)、Orf9b 中的 T60A(61.4%)和 NSP3 中的 P1228L(50.0%)。在 SARS-CoV-2 基因组中,nsp11、nsp7、nsp10、nsp9、nsp8 和 nsp16 区域没有观察到超过 90%的突变。另一方面,N、nsp3、S、nsp4、nsp12 和 M 具有最高的突变率。在 S 蛋白中,观察到的最高突变频率位于 aa508-635(0.77%)和 aa381-508(0.43%)。M、E 和 N 蛋白中突变频率最高的分别是 aa66-88(2.19%)、aa7-14 和 aa164-246(2.92%)。

结论:因此,监测 SARS-CoV-2 蛋白质组变化,检测热点突变和保守区域,可以提高 SARS-CoV-2 的诊断效率,并设计针对新出现变异体的安全有效的疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/07c21a3d188d/12967_2023_3996_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/48b7a2ab867a/12967_2023_3996_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/9f8cab32ded9/12967_2023_3996_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/c0967b118483/12967_2023_3996_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/11316cbe1359/12967_2023_3996_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/c6b2c1210b19/12967_2023_3996_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/07c21a3d188d/12967_2023_3996_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/48b7a2ab867a/12967_2023_3996_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/9f8cab32ded9/12967_2023_3996_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/c0967b118483/12967_2023_3996_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/11316cbe1359/12967_2023_3996_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/c6b2c1210b19/12967_2023_3996_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d40/9960476/07c21a3d188d/12967_2023_3996_Fig6_HTML.jpg

相似文献

[1]
Global landscape of SARS-CoV-2 mutations and conserved regions.

J Transl Med. 2023-2-25

[2]
Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends.

Viruses. 2024-8-20

[3]
Correlates of SARS-CoV-2 Variants on Deaths, Case Incidence and Case Fatality Ratio among the Continents for the Period of 1 December 2020 to 15 March 2021.

Genes (Basel). 2021-7-12

[4]
Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic.

Genes (Basel). 2022-3-21

[5]
Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020: A Global and Regional Approach by Epidemiological Week.

Viruses. 2021-2-4

[6]
Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades.

Infect Genet Evol. 2021-9

[7]
Emergence of novel SARS-CoV-2 variants in the Netherlands.

Sci Rep. 2021-3-23

[8]
Temporal landscape of mutational frequencies in SARS-CoV-2 genomes of Bangladesh: possible implications from the ongoing outbreak in Bangladesh.

Virus Genes. 2021-10

[9]
Genomic characterization of SARS-CoV-2 isolates from patients in Turkey reveals the presence of novel mutations in spike and nsp12 proteins.

J Med Virol. 2021-10

[10]
Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan.

PLoS One. 2022

引用本文的文献

[1]
Spatial Transcriptomics and Single Cell-RNASeq Reveals Cellular Heterogeneity of SARS-CoV-2 in Lung Tissues and Global Mutational Patterns in COVID-19 Patients.

J Med Virol. 2025-9

[2]
T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome.

iScience. 2025-7-2

[3]
From Delta to Omicron-Genetic Epidemiology of SARS-CoV-2 (hCoV-19) in Southern Poland.

Pathogens. 2025-7-17

[4]
Molecular Epidemiology and evolutionary characteristics of dengue virus serotype-2 strains in Sri Lanka.

medRxiv. 2025-5-21

[5]
The role of intrinsically disordered regions of SARS-CoV-2 nucleocapsid and non-structural protein 1 proteins.

Front Chem. 2025-6-11

[6]
BioInnovate AI: A Machine Learning Platform for Rapid PCR Assay Design in Emerging Infectious Disease Diagnostics.

Diagnostics (Basel). 2025-6-6

[7]
Genetic Variations of Three Kazakhstan Strains of the SARS-CoV-2 Virus.

Viruses. 2025-3-14

[8]
SARS-CoV-2 Alchemy: Understanding the dynamics of age, vaccination, and geography in the evolution of SARS-CoV-2 in India.

PLoS Negl Trop Dis. 2025-3-10

[9]
Structural and Phylogenetic Analysis on the Proofreading Activity of SARS-CoV-2.

Curr Microbiol. 2025-2-24

[10]
SARS-CoV-2 drug resistance and therapeutic approaches.

Heliyon. 2025-1-15

本文引用的文献

[1]
The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants.

J Virol. 2022-10-12

[2]
Time Series Analysis of SARS-CoV-2 Genomes and Correlations among Highly Prevalent Mutations.

Microbiol Spectr. 2022-10-26

[3]
Omicron (B.1.1.529) - A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein.

Int J Biol Macromol. 2022-10-31

[4]
Covariance predicts conserved protein residue interactions important for the emergence and continued evolution of SARS-CoV-2 as a human pathogen.

PLoS One. 2022

[5]
Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins.

Int J Mol Sci. 2022-6-7

[6]
Newly Emerged Antiviral Strategies for SARS-CoV-2: From Deciphering Viral Protein Structural Function to the Development of Vaccines, Antibodies, and Small Molecules.

Int J Mol Sci. 2022-5-29

[7]
Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness.

Science. 2022-6-17

[8]
Defining the risk of SARS-CoV-2 variants on immune protection.

Nature. 2022-5

[9]
Update on SARS-CoV-2 Omicron Variant of Concern and Its Peculiar Mutational Profile.

Microbiol Spectr. 2022-4-27

[10]
Global landscape of SARS-CoV-2 genomic surveillance and data sharing.

Nat Genet. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索