Suppr超能文献

基于计算机断层扫描和辐射剂量图像的深度学习模型,用于预测肺癌患者放疗后放射性肺炎。

Computed tomography and radiation dose images-based deep-learning model for predicting radiation pneumonitis in lung cancer patients after radiation therapy.

机构信息

Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht 6229 ET, The Netherlands.

Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht 6229 ET, The Netherlands; Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

出版信息

Radiother Oncol. 2023 May;182:109581. doi: 10.1016/j.radonc.2023.109581. Epub 2023 Feb 25.

Abstract

PURPOSE

To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy.

METHODS

CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed.

RESULTS

The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP.

CONCLUSION

A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.

摘要

目的

开发一种深度学习模型,该模型结合 CT 和辐射剂量(RD)图像,以预测接受根治性(化疗)放疗的肺癌患者发生放射性肺炎(RP)的情况。

方法

从 314 名回顾性收集的患者(训练集)和 35 名前瞻性收集的患者(测试集-1)中获取 CT、RD 图像和临床参数,这些患者被诊断为肺癌并接受 50Gy 和 70Gy 剂量的根治性放疗。来自临床试验 RTOG 0617 的另外 194 名(60Gy 组,测试集-2)和 158 名(74Gy 组,测试集-3)患者用于外部验证。使用 ResNet 架构开发了一种结合 CT 和 RD 特征的预测模型。此后,通过使用测试集-2 或 3 中的 40 名患者来调整 CT 和 RD 权重,以适应具有不同临床设置或剂量传递模式的队列。使用梯度加权类激活图(grad-CAM)进行视觉解释,以观察模型在预测过程中的注意力区域。为了提高可用性,开发了一款即用型在线软件。

结果

基线训练模型的判别能力在测试集-1 中 AUC 为 0.83,在测试集-2 中 AUC 为 0.55,在测试集-3 中 AUC 为 0.63。使用 RTOG-0617 部分患者子集调整模型的 CT 和 RD 权重后,测试集-2 和 3 的判别能力分别提高到 AUC 0.65 和 AUC 0.70。grad-CAM 显示了模型关注的感兴趣区域,有助于预测 RP。

结论

一种结合 CT 和 RD 图像的新的深度学习方法可以有效地、准确地预测 RP 的发生,并且该模型可以很容易地调整以适应新的队列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验