Suppr超能文献

深度学习估算非小细胞肺癌同步放化疗反应。

Deep learning to estimate response of concurrent chemoradiotherapy in non-small-cell lung carcinoma.

机构信息

Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China.

Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

J Transl Med. 2024 Oct 4;22(1):896. doi: 10.1186/s12967-024-05708-4.

Abstract

BACKGROUND

Concurrent chemoradiotherapy (CCRT) is a crucial treatment for non-small cell lung carcinoma (NSCLC). However, the use of deep learning (DL) models for predicting the response to CCRT in NSCLC remains unexplored. Therefore, we constructed a DL model for estimating the response to CCRT in NSCLC and explored the associated biological signaling pathways.

METHODS

Overall, 229 patients with NSCLC were recruited from six hospitals. Based on contrast-enhanced computed tomography (CT) images, a three-dimensional ResNet50 algorithm was used to develop a model and validate the performance in predicting response and prognosis. An associated analysis was conducted on CT image visualization, RNA sequencing, and single-cell sequencing.

RESULTS

The DL model exhibited favorable predictive performance, with an area under the curve of 0.86 (95% confidence interval [CI] 0.79-0·92) in the training cohort and 0.84 (95% CI 0.75-0.94) in the validation cohort. The DL model (low score vs. high score) was an independent predictive factor; it was significantly associated with progression-free survival and overall survival in both the training (hazard ratio [HR] = 0.54 [0.36-0.80], P = 0.002; 0.44 [0.28-0.68], P < 0.001) and validation cohorts (HR = 0.46 [0.24-0.88], P = 0.008; 0.30 [0.14-0.60], P < 0.001). The DL model was also positively related to the cell adhesion molecules, the P53 signaling pathway, and natural killer cell-mediated cytotoxicity. Single-cell analysis revealed that differentially expressed genes were enriched in different immune cells.

CONCLUSION

The DL model demonstrated a strong predictive ability for determining the response in patients with NSCLC undergoing CCRT. Our findings contribute to understanding the potential biological mechanisms underlying treatment responses in these patients.

摘要

背景

同步放化疗(CCRT)是治疗非小细胞肺癌(NSCLC)的重要手段。然而,深度学习(DL)模型在预测 NSCLC 对 CCRT 的反应方面的应用仍有待探索。因此,我们构建了一个用于估计 NSCLC 对 CCRT 反应的 DL 模型,并探讨了相关的生物学信号通路。

方法

共纳入来自 6 家医院的 229 名 NSCLC 患者。基于增强 CT 图像,使用三维 ResNet50 算法构建模型并验证其在预测反应和预后方面的性能。对 CT 图像可视化、RNA 测序和单细胞测序进行相关分析。

结果

DL 模型表现出良好的预测性能,在训练队列中的曲线下面积为 0.86(95%置信区间 0.79-0.92),在验证队列中的曲线下面积为 0.84(95%置信区间 0.75-0.94)。DL 模型(低评分与高评分)是一个独立的预测因素;它与训练队列中的无进展生存期和总生存期显著相关(风险比[HR]=0.54[0.36-0.80],P=0.002;0.44[0.28-0.68],P<0.001)和验证队列(HR=0.46[0.24-0.88],P=0.008;0.30[0.14-0.60],P<0.001)。DL 模型还与细胞黏附分子、P53 信号通路和自然杀伤细胞介导的细胞毒性呈正相关。单细胞分析显示,差异表达基因在不同免疫细胞中富集。

结论

DL 模型对预测 NSCLC 患者接受 CCRT 后的反应具有较强的预测能力。我们的研究结果有助于了解这些患者治疗反应的潜在生物学机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a10/11451157/a6e6ca55044d/12967_2024_5708_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验