Suppr超能文献

由具有可比扩散率的两种本体扩散物种耦合的隔室反应动力学空间模式的出现。

The emergence of spatial patterns for compartmental reaction kinetics coupled by two bulk diffusing species with comparable diffusivities.

作者信息

Pelz Merlin, Ward Michael J

机构信息

Department of Mathematics, UBC, Vancouver, British Columbia, Canada.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 Apr 17;381(2245):20220089. doi: 10.1098/rsta.2022.0089. Epub 2023 Feb 27.

Abstract

Originating from the pioneering study of Alan Turing, the bifurcation analysis predicting spatial pattern formation from a spatially uniform state for diffusing morphogens or chemical species that interact through nonlinear reactions is a central problem in many chemical and biological systems. From a mathematical viewpoint, one key challenge with this theory for two component systems is that stable spatial patterns can typically only occur from a spatially uniform state when a slowly diffusing 'activator' species reacts with a much faster diffusing 'inhibitor' species. However, from a modelling perspective, this large diffusivity ratio requirement for pattern formation is often unrealistic in biological settings since different molecules tend to diffuse with similar rates in extracellular spaces. As a result, one key long-standing question is how to robustly obtain pattern formation in the biologically realistic case where the time scales for diffusion of the interacting species are comparable. For a coupled one-dimensional bulk-compartment theoretical model, we investigate the emergence of spatial patterns for the scenario where two bulk diffusing species with comparable diffusivities are coupled to nonlinear reactions that occur only in localized 'compartments', such as on the boundaries of a one-dimensional domain. The exchange between the bulk medium and the spatially localized compartments is modelled by a Robin boundary condition with certain binding rates. As regulated by these binding rates, we show for various specific nonlinearities that our one-dimensional coupled PDE-ODE model admits symmetry-breaking bifurcations, leading to linearly stable asymmetric steady-state patterns, even when the bulk diffusing species have equal diffusivities. Depending on the form of the nonlinear kinetics, oscillatory instabilities can also be triggered. Moreover, the analysis is extended to treat a periodic chain of compartments. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.

摘要

起源于艾伦·图灵的开创性研究,对于通过非线性反应相互作用的扩散形态发生素或化学物质,从空间均匀状态预测空间模式形成的分岔分析是许多化学和生物系统中的核心问题。从数学观点来看,该理论对于双组分系统的一个关键挑战在于,当一个缓慢扩散的“激活剂”物种与一个扩散速度快得多的“抑制剂”物种发生反应时,稳定的空间模式通常只能从空间均匀状态出现。然而,从建模角度来看,这种模式形成所需的大扩散率比在生物环境中往往不现实,因为不同分子在细胞外空间往往以相似的速率扩散。因此,一个长期存在的关键问题是,在相互作用物种扩散的时间尺度可比的生物现实情况下,如何稳健地获得模式形成。对于一个耦合的一维体-隔室理论模型,我们研究了这样一种情形下空间模式的出现:两个具有可比扩散率的体扩散物种与仅在局部“隔室”(如一维域的边界)中发生的非线性反应相耦合。体介质与空间局部化隔室之间的交换通过具有特定结合速率的罗宾边界条件来建模。受这些结合速率的调节,我们针对各种特定的非线性情况表明,即使体扩散物种具有相等的扩散率,我们提出的一维耦合偏微分方程-常微分方程模型也会出现对称破缺分岔,从而导致线性稳定的非对称稳态模式。根据非线性动力学的形式,还可以触发振荡不稳定性。此外,分析扩展到处理隔室的周期性链。本文是主题为“扩展系统中模式形成和非线性动力学的新趋势”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验